
Glyphs 2.3
Create – Produce – Release
Font Editing for Everyone

Handbook July 2016

You are reading the Glyphs Handbook from July 2016 for
the application version 2.3. Please download the latest version
of this handbook at:
glyphsapp.com/get-started

© 2011–2016 glyphsapp.com

Written by Rainer Erich Scheichelbauer and Georg Seifert.

Thanks to Jeff Kellem, Rob Keller, Toshi Omagari and
Claus Eggers Sørensen for their invaluable input.

https://glyphsapp.com/get-started

Contents
1	 Glyphs  8
1.1	 A Tool for Creating

OpenType Fonts  8
1.2	 Installation  8
1.3	 Community  9
1.4	 Updates  9
1.5	 Glyphs Mini  9
1.6	 Keyboard Shortcuts  9
1.7	 Crash Reports  10

2	 Preferences  11
2.1	 Accessing Application

Preferences  11
2.1.1	 Updates  11
2.1.2	 User Settings  12
2.1.3	 Sample Strings  13
2.1.4	 Sharing  14
2.1.5	 Add-ons  14

3	 Edit View  16
3.1	 Editing Glyphs  16
3.2	 Drawing Paths  16
3.2.1	 Draw Tool  16
3.2.2	 Pencil Tool  17
3.2.3	 Primitives  17
3.3	 Editing Paths  18
3.3.1	 Selecting Nodes and

Paths  18
3.3.2	 Moving Selected Nodes and

Paths  18
3.3.3	 Converting Nodes and

Segments  19
3.3.4	 Nodes in Alignment

Zones  19
3.3.5	 Scaling and Rotating  20
3.3.6	 Aligning  21
3.3.7	 Duplicating Paths  21
3.3.8	 Deleting Nodes  22
3.3.9	 Opening and Closing

Paths  23
3.3.10	Cutting Paths  23

3.3.11	 Resegmenting Outlines  24
3.3.12	 Controlling Path

Direction  25
3.3.13	 Extremes and Inflections  26
3.3.14	 Duplicate Nodes  27
3.4	 Anchors  27
3.4.1	 Compound and Positioning

Anchors  27
3.4.2	 Ligature Carets  27
3.4.3	 Adding, Editing and

Removing Anchors  28
3.4.4	 Mark to Base Positioning  29
3.4.5	 Mark to Mark

Positioning  29
3.4.6	 Cursive Attachment

Anchors  30
3.5	 Guidelines  30
3.5.1	 Magnetic Guidelines  30
3.5.2	 Local and Global

Guidelines  30
3.5.3	 Glyph-Specific Undo

History  31
3.6	 Glyph Display  32
3.6.1	 Zooming  32
3.6.2	 Panning  33
3.6.3	 View Options  33
3.6.4	 Glyph and Layer Colors  33
3.7	 Background  34
3.8	 Entering Text  35
3.8.1	 Sample Texts  36
3.8.2	 Text Tool  37
3.8.3	 Writing Direction  38
3.9	 Measuring  38
3.9.1	 Info box  38
3.9.2	 Measurement Tool  40
3.9.3	 Measurement Guidelines  41
3.9.4	 Measurement Line  42
3.10	 Annotating  43
3.10.1	 Annotation Cursor  43
3.10.2	Annotation Text  43
3.10.3	Annotation Arrow  44

3.10.4	Annotation Circle  44
3.10.5	Plus and Minus

Annotations  44
3.11	 Images  44
3.11.1	 Adding Images  44
3.11.2	 Manipulating Images  45
3.12	 Previewing and Testing  46
3.12.1	 Previewing Kerning  46
3.12.2	 Previewing Masters  46
3.12.3	 Previewing Path Offset  46
3.12.4	 Previewing OpenType

Features  47
3.12.5	 Previewing Interpolated

Instances  47
3.12.6	Previewing in OS X  48
3.12.7	 Previewing in Adobe

Applications  49
3.12.8	Previewing in Web

Browsers  50

4	 Palette  51
4.1	 Palette Sidebar  51
4.2	 Dimensions  51
4.3	 Fit Curve  51
4.4	 Layers  52
4.4.1	 Working with Layers  52
4.4.2	 Special Layers  53
4.5	 Transformations  53
4.5.1	 Transformation Origin  53
4.5.2	 Mirroring  54
4.5.3	 Reversible

Transformations  54
4.5.4	 Aligning  54
4.5.5	 Boolean Operations  55

5	 Filters  56
5.1	 Filters  56
5.1.1	 Filters Menu  56
5.1.2	 Filters as Custom

Parameters  56
5.2	 Built-In Filters  57
5.2.1	 Fix Compatibility  57
5.2.2	 Hatch Outline  57

5.2.3	 Offset Curve  58
5.2.4	 Remove Overlap  59
5.2.5	 Roughen  60
5.2.6	 Round Corners  60
5.2.7	 Rounded Font  60
5.2.8	 Transformations  61
5.3	 Third-Party Filters  62

6	 Font View  64
6.1	 Viewing Glyphs  64
6.1.1	 Grid View  64
6.1.2	 List View  65
6.1.3	 Searching for Glyphs  66
6.2	 Managing the Glyph Set  66
6.2.1	 Generating New Glyphs  66
6.2.2	 Copying Glyphs Between

Files  68
6.2.3	 Removing Glyphs  69
6.3	 Glyph Properties  70
6.3.1	 Name  70
6.3.2	 Width and Sidebearings  70
6.3.3	 Kerning Groups  70
6.3.4	 Exports  71
6.3.5	 Color Label  71
6.3.6	 Unicode  71
6.3.7	 Note (List View)  72
6.3.8	 Components (List View)  72
6.3.9	 Read-Only Properties in List

View  72
6.4	 Batch-Processing  72
6.4.1	 Selecting Glyphs  72
6.4.2	 Menu Commands  73
6.4.3	 Batch-Renaming Glyphs  73
6.4.4	 Filters  74
6.4.5	 Palette Manipulations  74
6.5	 Filtering and Sorting  74
6.5.1	 Search Box  74
6.5.2	 Categories  75
6.5.3	 Languages  76
6.5.4	 Smart Filters  76
6.5.5	 List Filters  77
6.5.6	 Manage Filters  77

6.5.7	 Custom Parameter
‘glyphOrder’  78

6.6	 Names and Unicode  78
6.6.1	 Glyph Info Database  78
6.6.2	 Naming Glyphs  80
6.6.3	 Renaming Glyphs  82
6.6.4	 CID Mapping  82
6.7	 Images  82
6.7.1	 Adding and Managing

Images  82
6.7.2	 Viewing Images  83

7	 Font Info  84
7.1	 Font   84
7.1.1	 Family Name  84
7.1.2	 Units per Em  84
7.1.3	 Designer and Designer

URL  85
7.1.4	 Manufacturer and

Manufacturer URL  85
7.1.5	 Copyright  85
7.1.6	 Version  85
7.1.7	 Date  86
7.1.8	 Custom Parameters  86
7.2	 Masters  86
7.2.1	 Proportions: Weight, Width,

and Custom  87
7.2.2	 Metrics  87
7.2.3	 Stems  88
7.2.4	 Alignment Zones  89
7.2.5	 Custom Parameters  89
7.3	 Instances  90
7.3.1	 Is Active  90
7.3.2	 Style Name  90
7.3.3	 Weight and Width  91
7.3.4	 Style Linking  92
7.3.5	 Interpolation  93
7.3.6	 Custom Parameters  93
7.3.7	 Instance Preview  93
7.4	 Features  93
7.4.1	 OpenType Feature Code  93
7.4.2	 Automatic Feature Code  94
7.4.3	 Manual Feature Code  94

7.5	 Other Settings  96
7.5.1	 Grid Spacing and

Subdivision  96
7.5.2	 Use Custom Naming  96
7.5.3	 Disable Automatic

Alignment  97
7.5.4	 Keep Alternates Next to

Base Glyph  97
7.6	 Notes  97
7.6.1	 Font Note  97

8	 Reusing Shapes  98
8.1	 Components  98
8.1.1	 Building Compounds  98
8.1.2	 Turning Paths into

Components  99
8.1.3	 Recipes  99
8.1.4	 Editing Components  100
8.1.5	 Moving between Base

Glyphs and Compounds  100
8.1.6	 Anchors  101
8.1.7	 Automatic Alignment  103
8.1.8	 Locking Components  104
8.1.9	 Decomposing  105
8.1.10	Combining Paths and

Components  105
8.1.11	 Nesting Components  105
8.1.12	 Preferred Marks for Glyph

Composition  106
8.1.13	 Underscore

Components  106
8.2	 Smart Components  106
8.2.1	 Setting up Smart

Glyphs  107
8.2.2	 Adding Smart

Components  108
8.2.3	 Smart Component

Settings  109
8.2.4	 Part Anchors  109
8.3	 Corner and Cap

Components  109
8.3.1	 Corner Components  109
8.3.2	 Caps  111

9	 Spacing and Kerning  114
9.1	 Spacing  114
9.1.1	 Spacing Shortcuts  114
9.1.2	 Metric Keys  114
9.1.3	 Metric Keys and Automatic

Alignment  116
9.2	 Kerning  116
9.2.1	 Ways to Kern  116
9.2.2	 Kerning Groups  117
9.2.3	 Finding and Viewing

Kerning Pairs  118
9.2.4	 Deleting Kerning Pairs  119
9.2.5	 Copying Kerning Pairs  119
9.2.6	 Cleaning up Kerning  119
9.2.7	 Compressing Kerning  120
9.2.8	 Optional ‘kern’ Feature

Lookup  120

10	 PostScript Hinting  121
10.1	 Hinting  121
10.2	 Font-Wide Hints  122
10.2.1	 Standard Stems  122
10.2.2	Alignment Zones  123
10.2.3	Custom Parameters  125
10.3	 Autohinting  125
10.3.1	 Flex Hints  125
10.4	 Manual hinting  126
10.4.1	Stem Hints  127
10.4.2	Ghost Hints  129
10.4.3	Hinting Multiple

Masters  130

11	 TrueType Hinting  132
11.1	 Instructioning  132
11.2	 Autohint  132
11.2.1	 Either Manual or Automatic

Instruction  132
11.3	 Manual Instructions  133
11.3.1	 Horizontal Stems and

Zones  134
11.3.2	 Rasterizer Preview  135
11.3.3	 Anchor  136
11.3.4	 Align  136

11.3.5	 Stem  137
11.3.6	 Triple Hint  139
11.3.7	 Interpolate  139
11.3.8	 Diagonal  140
11.3.9	 Automatic Interpolation of

Untouched Points  140

12	 Multiple Masters  141
12.1	 Overview  141
12.2	 Setting up Masters  142
12.3	 Setting up Instances  143
12.4	 Fix Outline

Incompatibility  144
12.5	 Comparing Master

Layers  147
12.6	 Ensuring Family

Consistency across Files  148
12.7	 Brace Layers  149
12.8	 Bracket Layers  149
12.9	 Open Bracket Layers  150

13	 Color Fonts  151
13.1	 Working on Multiple

Layers  151
13.1.1	 Select All Layers Tool  151
13.1.2	 Keeping the Metrics in

Sync  151
13.1.3	 Exporting Color Fonts  151
13.2	 Layered Color Fonts  152
13.2.1	 Named Masters with

Master Colors  152
13.2.2	 Instances for All

Masters  152
13.2.3	 Previewing and Using

Layered Color Fonts  152
13.3	 Microsoft Color Fonts  153
13.3.1	 CPAL Table  153
13.3.2	 Creating Color Layers  154
13.4	 Apple Color Fonts  155
13.4.1	 Bitmap Image Files  155
13.4.2	Resolution Layers  156
13.4.3	Using Apple Color Fonts  156
13.5	 SVG Color Fonts  156

13.5.1	 SVG Image Files  157
13.5.2	 SVG Layers  157
13.5.3	 Using SVG Color Fonts  157

14	 Error Handling  158
14.1	 Glyph Names  158
14.2	 Font Names  158
14.3	 Duplicate Unicode

Values  159
14.4	 OpenType Feature Code  159
14.5	 Missing Outlines  162
14.5.1	 Open Paths  162
14.5.2	Wrong Path Orientation  162
14.5.3	 Multiple Paths on Top of

Each Other  162
14.5.4	Outline Incompatibility  162

15	 Import and Export  163
15.1	 Vector Drawing

Applications  163
15.1.1	 Adobe Illustrator  163
15.1.2	 Sketch  163
15.1.3	 Copy and Paste the

Paths  163
15.2	 FontLab Studio  164
15.2.1	 From FontLab Studio 5 to

Glyphs  164
15.2.2	 From Glyphs to FontLab

Studio 5  164
15.3	 Unified Font Object  164
15.3.1	 Native Saving Format  164
15.3.2	 Exporting to UFO  164
15.3.3	 Importing UFO Files  164
15.4	 Type 1, OpenType, and

TrueType  165
15.4.1	 Opening Existing Fonts  165

15.4.2	Generating OpenType/CFF
Fonts  165

15.4.3	Generating OpenType/TT
Fonts  166

15.5	 Webfonts  167
15.5.1	 Generating WOFF, WOFF2,

EOT  167
15.6	 Metrics  168
15.6.1	 Import Metric Data  168
15.6.2	Export Metrics  169
15.7	 Projects  169
15.7.1	 Setting up a Project  170
15.8	 Exporting a Project  171

16	 Extensions  172
16.1	 Scripts  172
16.2	 Plugins  172
16.2.1	 Manual Plugin

Installation  172
16.2.2	Plugin Manager  173
16.3	 SDK  174

17	 Appendix  175
17.1	 Automatic Feature

Generation  175
17.2	 Automatic Class

Generation  179
17.3	 Custom Parameters  180
17.4	 Changing the Glyph

Data  204
17.4.1	 Global Glyph Data

Changes  204
17.4.2	 Local Glyph Data

Changes  206
17.5	 Changing Tool

Shortcuts  206

� Glyphs Handbook, July 2016   8

1	 Glyphs
1.1	 A TOOL FOR CREATING OPENTYPE FONTS

Glyphs is primarily a tool for designing and producing new
fonts. Its main principle is that you can edit glyphs in a word
context. All tools are optimized for a type design workflow as
natural, quick, and intuitive as possible.
	 We believe that you should be able to focus on your
design and only be bothered with technicalities if it is really
necessary. There is no need for keeping a design version next
to a production version of your font. All production steps
take place at export time. By default, Glyphs automates a
lot of technical details for you, but you can always override
automation manually.
	 Glyphs exports OpenType fonts of all flavors: OpenType/CFF
(Compact Font Format, suffix .otf), OpenType/TT (TrueType,
suffix .ttf), and the webfont formats WOFF and WOFF2
(Web Open Font Format, suffixes .woff and .woff2), and EOT
(Embeddable OpenType, suffix .eot). All modern software,
including all modern web browsers, supports OpenType fonts.
However, outdated legacy software may require pre-OpenType
and pre-Unicode TTFs or PostScript Type 1 fonts, which cannot
be produced with Glyphs.
	 Glyphs can open existing fonts. However, in the import
process, some information stored in the font may be lost. For
details, see chapter 15, ‘Import and Export’ (p. 163).

1.2	 INSTALLATION
Glyphs is a Mac-only application. Glyphs 2.0 or higher requires
at least OS X 10.9.5 Mavericks. Download the trial from
glyphsapp.com/buy and move the app into your Applications
folder, which you can access in Finder via Go > Applications
(Cmd-Shift-A). To unlock the trial, open the .glyphs2license file
you purchased, either by simply double clicking the license
file, or by dragging it onto the app icon.

� Glyphs Handbook, July 2016   9

1.3	 COMMUNITY
If you have questions or suggestions, you can register and
post in the Glyphs forum at forum.glyphsapp.com. Because
of spam protection requirements, you must be a registered
Twitter user, and your first posting must be approved by
one of the moderators. For bug reports, you can register at
bugreport.‌glyphsapp.com.

1.4	 UPDATES
The application is updated on a regular basis. The latest
feature additions are described on glyphsapp.com/blog, and a
detailed change log is accessible through Help > Change Log. You
can check which version you have by choosing Glyphs > About
Glyphs and trigger an update with Glyphs > Check for Updates
or by activating automatic updates in Glyphs > Preferences >
Updates. For more details, see section 2.1.1, ‘Updates’ (p. 11).

1.5	 GLYPHS MINI
Glyphs Mini is a trimmed-down, light version of the
application. It lacks many of the advanced features of the full
application described in this handbook, e.g., support for plug-
ins, glyph layers, Multiple Masters, Python scripting, custom
OpenType feature code, custom parameters, corner, cap and
smart components, and manual hinting. It is intended as a
simple and affordable entry-level solution for casual type
design or putting together a dingbat (symbol) font.

1.6	 KEYBOARD SHORTCUTS
To enable a workflow as efficient as possible, Glyphs employs
a number of keyboard shortcuts. You can set your own
shortcuts in the OS X System Preferences, under Keyboard >
Shortcuts > App Shortcuts > Glyphs.
	 Some shortcuts conflict with default shortcuts for system
functions like Cmd-Space for Spotlight or Ctrl-Arrows for
switching between Spaces. To enable the full functionality
of the application, it is advisable to change these system
shortcuts in the System Preferences.

https://forum.glyphsapp.com
https://bugreport.glyphsapp.com
http://glyphsapp.com/blog

� Glyphs Handbook, July 2016   10

1.7	 CRASH REPORTS
After an application crash, you will see two crash report
dialogs. First, a generic one that goes to Apple and never
reaches us. Secondly, when the app restarts, you will see a
report dialog that sports the Glyphs app icon in the top left.
This second report is essential for us to fix the problem that
caused the crash. So, please, in your own interest, always send
those reports. If you choose to send a crash report after an
application crash, we will receive some technical information
about your hardware, your OS, and the last state of the
Glyphs application, and some additional information such as
the exact time your crash happened.
	 When run for the first time, Glyphs will ask for access to
your contacts, in order to auto-fill your name and e-mail
address in the crash reports. If you do not wish to grant that
access, you can manually enter your info when the crash
report dialog appears, or simply leave the fields blank.
	 Providing your contact information, however, allows us
to get back to you. In order to fix the bug that caused the
crash on your machine, we may ask you for the file you were
working on when the crash happened. We delete the files
after we have dealt with your problem, and do not hand them
over to a third party without your explicit consent.
	 If you can reliably reproduce a crash, it is a good idea
to describe the steps for reproducing it, either directly in
the crash report dialog, in the forum, or in a bug report on
bugreport.glyphsapp.com.

 

http://bugreport.glyphsapp.com

� Glyphs Handbook, July 2016   11

2	 Preferences
2.1	 ACCESSING APPLICATION PREFERENCES

Open the Preferences window through Glyphs > Preferences
(Cmd-comma) to access all application-wide preferences.

2.1.1	 Updates
The Updates section controls how Glyphs handles software
updates. Clicking on the Check now button will initiate a
version check and, if available, offer you a new version for
download and installation, presenting you a change log
describing the latest additions and changes. The time stamp of
the latest check is displayed next to the button.
	 If enabled, the Automatically Check for Updates option will
periodically try to establish an internet connection and see if
a new app version is available for download from the Glyphs
servers. We recommend keeping this option on.
	 Show Cutting Edge Versions will also offer you beta versions,
rather than only stable versions. Glyphs beta versions are
frequently released, and bugfixes are available much sooner
this way. Enable this version if you cannot wait for the
stable version or want to experiment with new app features.
Because of the high release frequency, beta versions are
not as thoroughly tested as stable versions. That is why we
recommend to always work with file copies if you are testing
cutting edge versions.

	

You can revert back to the stable version by downloading the
trial from glyphsapp.com/buy.

http://glyphsapp.com/buy

� Glyphs Handbook, July 2016   12

2.1.2	 User Settings
The option Keep Glyph Names from Imported Files will not force
the internal glyph naming scheme onto files originating from
other applications. This is useful if you want to employ a
workflow where you need to rely on a certain naming scheme,
e.g., if you exchange data with other apps.
	 When enabled, Disable Automatic Alignment for Imported
Files will disable the automatic positioning for all components
in fonts opened from other applications. For more details
on automatic alignment, see section 8.1.7, ‘Automatic
Alignment’ (p. 103).
	 Text View Width controls the line width of text entered in
Edit view. The value entered is measured in thousandths of an
em. This measurement is independent from your Units per Em
value as entered in Font Info.
	 Handle Size controls the size of all displayed points in Edit
view, such as on-curve nodes, control handles, anchors, and
position markers of manual hints. Larger nodes make it easier
to click-select a point, while smaller nodes make for a cleaner
user interface.
	 You can set the display colors of corner nodes, smooth
nodes, alignment zones, positive and negative kerning
indicators in the Edit view, and the canvas color. The Standard
button resets the color values to their defaults.
	 Master compatibility with offset sets the way Glyphs
compares outlines when View > Show Master Compatibility
(Ctrl-Opt-Cmd-N) is on. Glyph masters are displayed on top
of each other if the option is disabled, or in an exploded view
if it is enabled. For more details, see section 12.4, ‘Fix Outline
Incompatibility’ (p. 144).
	 The option Use system console for script output will redirect
the standard out of the scripting API to Console.app, rather
than the Macro Panel (Window > Macro Panel). This is useful
if a script crashes Glyphs and you cannot see its output
otherwise.
	 Disable Localization will keep the interface language of
Glyphs in English rather than the localization you have set in
your System Preferences.
	 Use Versions will make Glyphs employ the system’s saving
method, ‘Versions’, introduced in OS X 10.7 Lion. It automates
file saving, and enables version browsing. However, you may
prefer to take file saving in your own hands, especially if you

� Glyphs Handbook, July 2016   13

are keeping your files in cloud services that utilize their own
version control mechanisms that, due to the very frequent
incremental saves, may become hard or impossible to use if
Use Versions is on.

	

2.1.3	 Sample Strings
Here, you can import, edit, reset, copy, or paste default sample
strings, separated by newlines. The text field is Unicode savvy,
so you can enter any diacritic and non-Latin characters. Use a
backward slash followed by a lowercase n (\‌n) for a newline in
the sample string. Use a forward slash followed by the glyph
name and a separator character (either a space or another
forward slash) as an escape for any glyph. This is especially
useful for hard-to-type or unencoded glyphs, e.g., OpenType
variations such as ‘/a.sc’. Use ‘/‌Placeholder’ (with a forward
slash and a separator character at the end) for the Placeholder
function, i.e., the current glyph in Edit view.
	 The Open File button allows you to import an external text
file, whereas the Standard button will reset the sample texts
to the app defaults. For more details on how to use sample
strings, (see 3.8.1, ‘Sample Texts’, p. 36).

� Glyphs Handbook, July 2016   14

2.1.4	 Sharing
With the Enable External Preview option, Glyphs can mirror the
content of the current Edit tab on an iOS device, such as an
iPhone, iPod Touch, or iPad. If you want to make use of this
functionality, install the free ‘Glyphs Viewer’ app from the iOS
AppStore. The iOS device and the Mac running Glyphs must be
on the same network. Start the Glyphs Viewer app and select
the app which you want to mirror on your handheld device.
Tap and hold anywhere on the screen to go back to the menu.
	 If Glyphs Viewer cannot find your machine, make sure both
the Mac and the iOS device are connected to the same wireless
network. Restart both machines and try again, in case the
problem persists. If it still cannot connect, try in a different
network, or adjust your router settings. If Mac and iOS device
communicate to the router with different wireless standards,
Glyphs Viewer will not be able to connect to the Mac. This
can happen if the router is set up to use multiple modulation
standards (e.g., g and n) simultaneously. Setting the router to
either 802.11 g only or 802.11 n only may help in such cases.

2.1.5	 Add-ons
All installed plugins are listed in the Plugins tab. If the
developer embedded the necessary information inside
the plugin, Glyphs can also notify you of plugin updates.
Depending on the embedded information provided by the
developer, an option for downloading the new version, or for
taking you to the plugin website can be displayed.
	 If the option Automatically check for updates is enabled,
Glyphs will notify you of updates when the app has started
up, and offer to take you to this tab in the Preferences window.
Plugins for which an update is available, will be marked with
an asterisk. Selecting the plugin will bring up a Download
button in the bottom right of the window. A click on the
button will take you to the plugin homepage as indicated by
its author.
	 To install a plugin, simply open the plugin file in Finder,
and confirm the dialog that appears in Glyphs. After an app
restart, the plugin’s functionality is available. To remove an
installed plugin, right-click on the name of the plugin in
the list, and choose Show in Finder from the context menu.
Move the plugin file to the Trash or anywhere out of the

� Glyphs Handbook, July 2016   15

Plugins folder, and restart the application for the changes to
take effect.

	

In the Modules tab, the Install Modules button will download
and install the third-party open-source Python libraries
Vanilla by Tal Leming, RoboFab by Tal Leming, Erik van
Blokland and Just van Rossum, and FontTools by Just van
Rossum as maintained by Behdad Esfahbod. Some scripts
available for Glyphs make use of these libraries. If you intend
to install third-party scripts, or write your own Python scripts
for extending Glyphs, we strongly recommend installing
these libraries. Also, a Python wrapper for RoboFab called
objectsGS.py will be placed in your Scripts folder. RoboFab
scripts work with their usual imports at the beginning, e.g.,
‘from robofab.world import CurrentFont’.

� Glyphs Handbook, July 2016   16

3	 Edit View
3.1	 EDITING GLYPHS

In Edit view, you can edit glyphs. To access Edit view, you need
to open an Edit tab with View > New Tab (Cmd-T). To access an
existing tab, either click on the respective tab title or press the
number of the tab (2 through 9) while holding down Cmd-Opt.
The first tab (Cmd-Opt-1) is always the Font view. For more
details, see chapter 6, ‘Font View’ (p. 64).
	 The Edit view has two modes, edit mode and text mode.
Access text mode by activating the Text tool (keyboard
shortcut T). For more details, see section 3.8, ‘Entering
Text’ (p. 35). Switch into edit mode by either choosing one of
the other tools, double clicking one of the displayed glyphs, or
pressing the Esc key when the text cursor is situated in front
of a glyph, i.e., to the left when in left-to-right writing mode,
to the right when in right-to-left mode, and on top when in
top-to-bottom mode.

3.2	 DRAWING PATHS
Create new paths with the Draw, Pencil or Primitives tools.

3.2.1	 Draw Tool
When the Draw tool (shortcut P as in ‘Path’ or ‘Pen’) is
active, click anywhere in the canvas to create straight lines,
or click and drag to create curve segments. If you keep your
mouse button pressed, you can move the on-curve point
by holding down the space bar on your keyboard. Close the
outline by clicking on its first node.
	 Nodes in smooth connections will appear as green circles.
You can set a different color in Glyphs > Preferences > User
Settings. A smooth connection can either be a curve (an on-
curve point in line with two surrounding off-curve points) or
a tangent (an on-curve point in line with another on-curve
point and an off-curve point). You can trigger the display of
nodes with View > Show Nodes.

	

This handbook uses the
term ‘node’ to refer to on-

curves, ‘handle’ for off-curves,
and ‘point’ as an umbrella

word for both types.

� Glyphs Handbook, July 2016   17

In order to draw a corner, hold down the Option key while
dragging. Corner points are marked by blue squares. Again,
you can choose a different color in Glyphs > Preferences > User
Settings. Points in a corner connection are not kept in line, so
you can move them independently from each other.

	

Handles (Bézier control points, off-curve points) control the
curvature of the path segment and are displayed as small
gray circles. In open paths, start and end points are displayed
as short perpendicular blue lines. The start point also features
a blue triangle, indicating the path direction, i.e., the stored
order of the points. The path direction is important for certain
path functions, glyph rendering (see 3.3.12, ‘Controlling Path
Direction’, p. 25), and corner and cap components (see 8,
‘Reusing Shapes’, p. 98).

3.2.2	 Pencil Tool
The Pencil tool (shortcut B) offers a quick way to draw
freehand curves, especially for people using tablets. The
resulting paths will need some cleaning up. That is because
the Pencil paths will usually contain too many nodes in order
to stay as close as possible to the cursor movement.

3.2.3	 Primitives
Glyphs offers rectangles and ovals as built-in primitive shapes.
Click the tool or press F to activate it in its current mode. Click
and hold the Primitives tool or press Shift-F to choose between
the two shape options. Alternatively, you can use Draw Circle
or Draw Rect from the context menu to switch between the
two functions.

	

� Glyphs Handbook, July 2016   18

Click once on the canvas to create a primitive by entering its
measurements with the keyboard. Or click and drag to draw
it directly into the edit area. Hold down Shift for a perfect
square or circle. Hold down Option to draw from the center of
the shape.

3.3	 EDITING PATHS

3.3.1	 Selecting Nodes and Paths
Click and drag with the Select tool (shortcut V) to select
nodes and handles inside a rectangular selection area. Hold
down the Option key to ignore the handles and only select
on-curve nodes. Double click on or near an outline segment
to select complete paths. Hold down the Shift key to extend or
reduce the selection.
	 Glyphs allows you to select multiple handles independently
of the nodes. You can also Shift-select any number of handles
in a non-contiguous selection. When a single node or handle is
selected, press the Tab key to select the following point on the
path, or Shift-Tab to go to the previous one.

3.3.2	 Moving Selected Nodes and Paths
Move a selection using the mouse or the cursor keys. Moving
nodes will move the attached handles even if they are not
selected. Hold down the Shift key for increments of 10, and the
Cmd key for increments of 100. Hold down the Option key to
move only explicitly selected on-curve points. While moving
one or more nodes, hold down both Ctrl and Option (or add
Option after you started dragging) to ‘nudge’ them, i.e., to
proportionally adjust the surrounding unselected handles at
the same time.

	

Left: original glyph outline with
two selected nodes.

Center: selected nodes moved,
handles stay the same.

Right: selected nodes nudged,
handles are adjusted.

� Glyphs Handbook, July 2016   19

To move a handle, simply drag it with your mouse. Or select it
and use your arrow keys. If more than one handle is selected,
you can move them all simultaneously. Moving one or more
handles while holding down the Option key preserves their
angles. Again, add the Shift key for increments of 10, or the
Cmd key for increments of 100.
	 While moving a handle next to a smooth (green) node, you
can hold down Ctrl and Option simultaneously to mirror the
length and angle of the adjacent handle on the other side of
the node.
	 Click anywhere on the segment and drag to quickly change
the shape of the segment. Option-drag a segment to change the
handle lengths, but keep their respective angles.

3.3.3	 Converting Nodes and Segments
Convert between (green) smooth connections and (blue) corners
by double clicking an on-curve point, or by selecting one or
more nodes and pressing Return.
	 The Glyph > Tidy up Paths command (Cmd-Opt-Shift-T)
applies heuristics to set the appropriate mode for all nodes at
once, or all selected nodes if there is a selection. It also removes
superfluous points, e.g., handles on a straight segment, or an
on-curve point exactly in line between two others.
	 Option-clicking a line segment converts it into a curve
segment, i.e., adds handles. To convert a curve back into a line
segment, select and delete one or both of its handles.

3.3.4	 Nodes in Alignment Zones

	

Nodes located exactly on a vertical metric line (see 7.2,
‘Masters’, p. 86) are highlighted with a beige diamond. Inside

Be careful when tidying
up paths: In Multiple

Master setups, superfluous
points may be necessary
for outline compatibility.

Tip: Quickly add handles
by Option-clicking on the

outline between two nodes.

� Glyphs Handbook, July 2016   20

an alignment zone, the highlighting assumes the shape of
a circle. This helps controlling the position of nodes even at
small zoom scales.

3.3.5	 Scaling and Rotating
The attributes of the current node selection are shown in the
gray Info box (View > Show Info, Cmd-Shift-I):

	

When more than one node is selected, you can scale or
move the selection by changing the numbers for its position
(x and y) and its dimensions (↔ for width, ↕ for height) in
the Info box. Set the transformation origin with the nine
reference points on the left. Close the lock symbol to scale
width and height proportionally. Open the lock to distort
the selection, i.e., scale width and height independently from
each other. You can use the up and down arrow keys to step
through the numbers. Hold down Shift for increments of 10.
	 When multiple nodes are selected, the number next to the
solid square will indicate how many nodes and handles are
currently selected. The number next to the outlined square
represents the total number of on-curve and off-curve points
on the current glyph layer.
	 You can also rotate and scale your selection manually
with the Rotate tool (shortcut R) and the Scale tool
(shortcut S). With one of these tools, click anywhere on the
canvas to set the transformation origin, then click and drag to
transform the current selection. Hold down the Shift key to
rotate in steps of ninety degrees, or scale proportionally.

	

Tip: In all number input fields
throughout the application, you
can use the up and down cursor

keys to increase or decrease
the value. Simultaneously

holding down the Shift key
gives you increments of 10.

� Glyphs Handbook, July 2016   21

When more than one node is selected, you can choose to
display a bounding box for the selection with View > Show
Bounding Box (Cmd-Opt-Shift-B). Drag any of the white
knobs to scale with the opposite end of the selection as
transformation origin. Hold down the Shift key to scale
proportionally, and the Option key to use the center as
transformation origin.
	 More path transformations are possible via the Palette. See
section 4.5, ‘Transformations’ (p. 53) for further details.

3.3.6	 Aligning
Choose Paths > Align Selection (Cmd-Shift-A) to quickly align
all selected points. The command aligns both nodes and
handles. Glyphs will then automatically choose between
horizontal and vertical alignment, whichever is smaller for
the current selection. The Align Selection command respects
the transformation origin of the gray Info box. Alternatively,
you can either set the width or the height value of two or
more selected points to zero in the Info Box.
	 You can center an anchor horizontally between to points
if you run the Align Selection command while two points and
one anchor are selected.
	 Running the Align Selection command while exactly one
point and one component are selected, will align the origin
point of the component to the selected node. The node keeps
its position. The origin point is where the baseline crosses the
left sidebearing when the italic angle is zero. If the component
contains an anchor called ‘origin’, Glyphs will use the position
of that anchor instead of the origin point for aligning the
component to a node.
	 Applying Paths > Align Selection on a single node will try to
move the node over the nearest node in the background.
	 Paths > Align Selection works on individual nodes. To also
align partial paths, complete paths or components to each
other, use the Transformations section of the Palette sidebar
(Opt-Cmd-P). See chapter 4.5, ‘Transformations’ (p. 53), for
more details.

3.3.7	 Duplicating Paths
To quickly duplicate a complete path, first select it entirely by
double clicking on or near it. Repeat with the Shift key to add
or subtract paths to the selection. Then, hold down the Option

If the italic angle is not zero,
instead of the left sidebearing,
an imaginary vertical line that
crosses the slanted LSB at half

x-height is used. In that case,
the origin point is where this

line crosses the baseline.

� Glyphs Handbook, July 2016   22

key while you click and drag a copy of the paths into their
new position.
	 Alternatively, you can simply copy (Cmd-C) and paste
(Cmd-V) the selected artwork. This method may make more
sense if you plan to position the new paths with the keyboard
rather than with the mouse.
	 Option-dragging partial paths will duplicate the selected
segments. This can be helpful when replicating glyph parts
like serifs or spurs.

3.3.8	 Deleting Nodes
Simply select a node and press the Delete key to delete the
node. Alternatively, you can use the Erase tool (shortcut E).
Glyphs will keep the path closed and try to reconstruct the
path segment without the node:

	

Hold down the Option key to break the path, i.e., remove the
node and both path segments surrounding the node:

	

To get rid of a segment between two on-curve nodes, switch
to the Erase tool (shortcut E or Shift-E), and while you hold
down the Option key, click on the path segment. Alternatively,
you can select a handle and press Opt-Delete. Or select the
complete segment, including the on-curve nodes at the edges,

Tip: A quick way to get rid of
a path segment between two

nodes is to insert a point with
the Draw tool (shortcut P) and
immediately Option-delete it.

� Glyphs Handbook, July 2016   23

and press Opt-Delete. This also works for multiple segments,
adjacent or non-adjacent:

	

3.3.9	 Opening and Closing Paths
With the Draw tool (shortcut P), click on a node to open
the path in the position of the node. Open path endings are
marked by short blue perpendicular lines. You can now drag
them apart with the Select tool (shortcut V).

	

To close the path again, simply drag an open line ending on
top of another with the Select tool (shortcut V). Alternatively,
you can close all open paths in a glyph by right-clicking
anywhere in the canvas and choosing Close Open Paths from
the context menu. Or select two open ends, and choose Connect
Nodes from the context menu.

3.3.10	 Cutting Paths
With the Knife tool (shortcut E or Shift-E), click and drag
a line across a path, to cut the outline into two separate
outlines. Glyphs will close the two resulting paths along the

Tip: When multiple tools
share one icon in the

toolbar such as the Knife
and Erase tools, you can add
Shift to the tool shortcut to

toggle between the tools.

� Glyphs Handbook, July 2016   24

cutting line. If you cut across several overlapping paths, it will
rewire the segments with each other.

	

To activate the Knife tool when it is not displayed in the
toolbar, click and hold the Erase tool , and choose Knife from
the pop-up menu. Alternatively, you can press Shift-E.

	

3.3.11	 Resegmenting Outlines

	

In order to recreate overlaps in a path, select an even number
of nodes and choose Reconnect Nodes from the context menu.
To open the context menu, right-click or Ctrl-click anywhere
in the canvas. Glyphs will then proceed to reconnect each

The results of the Open Corner
and Reconnect Nodes operations.

Opening corners only works
on (blue) corner points.

� Glyphs Handbook, July 2016   25

node with its closest selected neighbor. The Open Corner
command creates a triangular overlap at each selected
point. Resegmenting your outlines this way allows you to
manipulate the path segments independently from each other.
It can also make interpolation significantly easier.
	 The size of the created overlap will be approximately half
the first values entered for vertical and horizontal stems in
File > Font Info > Masters (Cmd-I). Thus, the created overlap
should comfortably reach into the middle of your stems.
	 Opened corners will be considered invisible if the triangular
overlaps are small enough in relation to the neighboring
visible outline segments. That way, opened corners can also be
placed on the outside of paths. If the overlap size goes beyond
the threshold size, then they will become visible again. This is
useful for editing bent finials, as in a sans-serif lowercase s.

3.3.12	 Controlling Path Direction
The starting point of a closed path, indicating the path
direction. Again, green and blue denote a smooth connection
or a corner, respectively. Likewise, the end points of an open
path are displayed as arrowheads. On a closed path, you can
make any on-curve node the first node by picking Make Node
First from its context menu.
	 All outer (black) paths need to run counter-clockwise,
while (white) counters must go clockwise. You can change a
path’s direction by selecting it and choosing Paths > Reverse
Contours or Reverse Selected Contours from the context
menu. One node on each path will suffice as path selection
in this case. When no path is selected, you can use Paths >
Reverse Contours to toggle all path directions in a glyph. 	

Tip: The easiest and quickest
way to get a hole in a glyph is
to draw both inner and outer

shapes, and press Cmd-Shift-R
(Correct Path Direction).

� Glyphs Handbook, July 2016   26

Paths > Correct Path Direction (Cmd-Shift-R) will perform an
informed guess and find the right path orientation for all
contours in selected glyphs. This will also rearrange the
contour order, and reset the starting points of all paths to the
bottom left nodes.
	 Holding down the Option key changes the command to
Correct Path Direction for all Masters (Cmd-Opt-Shift-R). As the
name indicates, it will include all master layers, but also all
Bracket (see 12.8, ‘Bracket Layers’, p. 149) and Brace layers (see
12.7, ‘Brace Layers’, p. 149). The command ignores all other
non-master layers. This is useful in a Multiple Master setup.
	 In order to successfully interpolate, path order, starting
points, and path directions need to be compatible and
consistent throughout all font masters. For more details on
interpolation, see chapter 12, ‘Multiple Masters’ (p. 141).

3.3.13	 Extremes and Inflections
Extrema are all positions on a path with a completely
horizontal or vertical tangent. An inflection is the position in
some path segments where the segment changes its bend from
clockwise to counterclockwise or vice versa. It is considered
good practice to have nodes on extremum points. Some font
technologies, like hinting, and some path operations, like
nudging (see 3.3.2, ‘Moving Selected Nodes and Paths’, p. 18),
require nodes at extremum positions. Some operations, like
offsetting a curve (see 5.2.3, ‘Offset Curve’, p. 58), work better
with inflection points. Also, some font renderers may behave
unexpectedly if such nodes are not in place. Inflection points
pose a problem for outline interpolation, since they can
easily cause kinks in outlines. Also, you may want to avoid
additional nodes in order to keep the overall file size as small
as possible, e.g., for webfont production.
	 You can insert nodes on extremum and inflection points by
Shift-clicking a segment with the Path tool (P). A node will be
inserted at the nearest extremum or inflection.
	 Alternatively, you can also choose Paths > Add Extremes
and nodes will be added at extremes on all paths of the active
layer. Glyphs will not add an extreme if the resulting segment
would be very short. In this case, it assumes that the node
placement was intentional. On the other hand, if a node is
only very slightly off the extremum position, Glyphs will
attempt to preserve the outline shape while moving the node

� Glyphs Handbook, July 2016   27

into the extremum position and turning the surrounding
handles entirely vertical or horizontal.
	 You can have extremes added automatically at export
time with a Filter custom parameter called ‘AddExtremes’.
See the Filter entry in the list of custom parameters in
the Appendix (p. 184) for details. This can be useful for
shallow curves or certain Multiple Master situations, where
adding extremes would make editing or interpolating
unnecessarily complex.

3.3.14	 Duplicate Nodes
When two adjacent on-curve nodes share the same
coordinates, thus producing a zero-length segment, they are
highlighted with a red circle. You can merge these nodes with
Paths > Tidy Up Paths (Cmd-Opt-Shift-T).

	

3.4	 ANCHORS

3.4.1	 Compound and Positioning Anchors
Anchors are special points that fulfill multiple tasks in Glyphs.
Primarily, they serve as a connecting pivot for automatically
aligning components, corners and caps, as well as for Mark-to-
Base and Mark-to-Mark Positioning, and Cursive Attachment
(see 8, ‘Reusing Shapes’, p. 98). These anchors adhere to
certain naming conventions. For more details on these uses,
see section 8.1.6, ‘Anchors’ (p. 101). When an ‘origin’ anchor is
placed inside a glyph, it can be used for aligning a component
(see 3.3.6, ‘Aligning’, p. 21) to a regular path node.
	 Some third-party scripts and plugins make use of special
anchors. Refer to their documentation for further details.

3.4.2	 Ligature Carets
Ligature caret positions are the positions where the text
entry cursor is displayed when placed somewhere inside a
ligature. In a ligature glyph, these positions are defined by
special anchors on the baseline. They must be named ‘caret’,
followed by an underscore suffix, e.g., ‘caret_1’, ‘caret_2’, etc. The
suffix needs to be different for each anchor, because anchor
names must be unique inside a glyph layer. The numbering

� Glyphs Handbook, July 2016   28

order does not matter, the numbers are used exclusively for
differentiation.

	

caret_1

Glyph > Set Anchors (Cmd-U) will insert appropriate caret
anchors in properly named ligature glyphs, i.e., the names
of the characters in the ligature, connected by underscores,
e.g., s_t or f_f_h. For the glyph naming convention employed
by Glyphs, see section 6.6, ‘Names and Unicode’ (p. 78). At
export, Glyphs will use the caret information to build so-
called LigatureCaretByPos instructions in the GDEF OpenType
table. At the time of this writing, the only known software
supporting ligature caret positioning are Mac applications that
make use of the Cocoa text engine. Adobe and Microsoft apps
ignore this information.

3.4.3	 Adding, Editing and Removing Anchors
Insert an anchor by Ctrl-clicking or right-clicking inside a
glyph, and choosing Add Anchor from the context menu. An
anchor called ‘new anchor’ will be placed at the click position.
Its name is immediately selected for renaming, so you can
enter the name right away. Confirm the new name by pressing
the Return key or clicking anywhere in the canvas.
	 To change an anchor name, select it, press the Return key,
and type a new name. Alternatively, click or double click its
name in the gray Info box when the anchor is selected, and
type a new name there.
	 The built-in glyph info database has default anchors
associated with some glyphs. To have them added
automatically, choose Glyph > Set Anchors (Cmd-U) or, with

� Glyphs Handbook, July 2016   29

the Option key held down, Glyph > Reset Anchors (Cmd-Opt-U).
The latter will delete all existing anchors before inserting
the defaults.
	 Select an anchor by clicking on the red dot that represents
it. You can select the next or previous anchor by pressing the
Tab key, or Shift-Tab, respectively. Select multiple anchors
by Shift-clicking them. Names are only shown for selected
anchors. If you want to select all anchors, you may need to
run Edit > Select All (Cmd-A) twice, since selecting all will select
all paths, and only select all anchors and components if all
available paths have been selected already.
	 Move an anchor like you would move a node, i.e., either
with the mouse, the arrow keys, or through the gray Info
box. An anchor is diamond-shaped if it is placed exactly on
a metric line such as the x-height or the baseline. It is circle-
shaped in all other cases. To quickly duplicate an anchor,
Option-drag it. Since anchor names must be unique inside a
layer, an underscore will be added to the end of the name.
	 Remove one or more selected anchors by simply pressing
the Delete or Backspace key.

3.4.4	 Mark to Base Positioning
Glyphs can automatically build the ‘mark’ (Mark to Base)
feature from combining (non-spacing) diacritical marks
containing underscore anchors, e.g., ‘_bottom’ or ‘_top’, in
combination with all base glyphs that carry corresponding
base anchors, e.g., ‘bottom’ or ‘top’. Latin combining diacritical
marks carry a ‘comb’ at the end of their names, e.g., acutecomb
or macroncomb.
	 Combining diacritical marks have their own Unicode values
and thus can be typed or inserted in a text. This way, a user
can place any mark on any base letter, by first typing the
regular letter, and then inserting the combining mark.
	 Alongside the ‘mark’ feature, Glyphs will also build the
‘ccmp’ (Glyph Composition and Decomposition) if glyphs like
idotless and jdotless are present. See chapter 17.1, ‘Automatic
Feature Generation’ (p. 175), for further details.

3.4.5	 Mark to Mark Positioning
If both underscore and regular anchors are present in a
combining diacritical mark, Glyphs will also automatically
build the ‘mkmk’ (Mark to Mark) feature. A user will then be

� Glyphs Handbook, July 2016   30

able to stack any combining mark on any other combining
mark carrying both anchors.

3.4.6	 Cursive Attachment Anchors
To enable true cursive attachment in Arabic typesetting, add
anchors called ‘exit’ and ‘entry’ to the respective stroke endings
and beginnings in medial, final, and initial letter forms. The
entry anchor of the instroke will be connected to the exit
anchor of the preceding outstroke. You can preview cursive
attachment immediately in the Edit view when right-to-left
typesetting is enabled (see 3.8.3, ‘Writing Direction’, p. 38).

3.5	 GUIDELINES

3.5.1	 Magnetic Guidelines
If you drag a node selection across the canvas, red lines will
appear, indicating when your selection is aligned with other
nodes or a vertical metric. You can temporarily deactivate
magnetic guidelines by holding down the Ctrl key.
	 Likewise, dragging a node or any other object will snap to
all nodes and handles on paths, as well as in components.
When you move close to a node in a component while
dragging, Glyphs will fade in small representations of the
nodes inside the component. Again, you can disable node
snapping by holding down the Ctrl key.

3.5.2	 Local and Global Guidelines
To toggle the display of guidelines in Edit view, choose View >
Show Guides (Cmd-Shift-L)
	 To add a static, local guideline to the currently displayed
glyph layer, right- or Ctrl-click to open the context menu and
choose Add Guideline. A horizontal local guideline will be
added at the click position. If two nodes are selected while
adding the guideline, it will be laid through the nodes. You
can select it by clicking on it, alter its position by clicking
and dragging its knob. Double click the circle to turn it
perpendicular to its original orientation. Click and drag a
selected guideline anywhere else but on the knob to rotate it.
	 To create a global guideline, i.e., a guideline that appears in
all glyphs throughout the font master, hold down the Option
key while navigating the context menu, and choose Add Global
Guideline. To toggle a guideline between local and global, select

Pro User Tip: In order to
quickly create a guideline

in measurement mode,
temporarily activate the

Measurement tool by
simultaneously holding down

Ctrl-Opt-Cmd, and press
the G key while dragging

a measurement line.

� Glyphs Handbook, July 2016   31

it, and from the context menu, choose Make Global Guideline or
Make Local Guideline, respectively.
	 Quickly duplicate one or more local or global guidelines
by selecting them and holding down the Option key while
dragging them to a new position.
	 You can lock one or more guidelines by choosing Lock
Guidelines from their context menu. A locked guideline cannot
be selected and will display a lock symbol instead of its knob.
To unlock a guideline again, Ctrl- or right-click the knob and
choose Unlock Guide from the context menu.

Select a guideline by clicking anywhere on it: a filled knob
indicates a selected guideline. Press the Tab key to quickly
select the next, or Shift-Tab to select the previous guideline.
When a guideline is selected, you can move it using your
arrow keys (add Shift or Cmd for larger increments), or by
dragging its knob with the mouse, just like you would move
a regular node. Change the angle by dragging the guideline
anywhere off the node. You can also enter values for its
position and its angle in the gray Info box (Cmd-Shift-I).
	 By default, a guideline will be set relative to the left
sidebearing. However, if you change the alignment of the
guideline by clicking on the Alignment icon in the Info box,
the guideline will stay fixed relative to the right sidebearing
or relative to both sidebearings. This can be useful for
slanted guidelines, especially when they are global or when
the right sidebearing is changed. With the measurement
checkbox , you can turn it into a measurement guideline.
For more details, see section 3.9, ‘Measuring’ (p. 38).

	

3.5.3	 Glyph-Specific Undo History
In Edit and Font view, the Undo mechanism works on a glyph
level. That means that every glyph has its own undo history.

From top to bottom:
unselected and selected
local guides, unselected

and selected global guides,
locked local guide, and

locked global guide.

� Glyphs Handbook, July 2016   32

	 This also implies that certain global actions, especially
manipulating global guidelines, cannot be undone. That is
because global guidelines are associated with a master, and
not a glyph, and therefore are ignored by the glyph-level
undo history.

3.6	 GLYPH DISPLAY

3.6.1	 Zooming
There are many ways to zoom in and out in Edit view. If you
are on a MacBook or have a trackpad to your disposal, you can
use pinch and stretch gestures. Or hold down the Option key
and use a scroll gesture or the scroll wheel of your mouse. Or
activate the Zoom tool (shortcut Z) and click in the canvas
to zoom in, Opt-click to zoom out. Alternatively, click and drag
across an area, and it will be zoomed to fill the window. You
can temporarily activate the Zoom tool by holding down Cmd-
Space for zooming in, or Opt-Cmd-Space for zooming out. If
Cmd-Space collides with another shortcut on your system, you
can try pressing Space before you add the Cmd key.
	 Or you can use the zoom commands from the View menu:
Zoom In (Cmd-plus) and Zoom Out (Cmd-dash). Zoom to Active
Layer (Cmd-zero) will maximize the area between ascender
and descender in the window. Zoom to Actual Size (Cmd-Opt-
zero) will zoom one font unit to the size of one screen point,
i.e., one pixel on a classic low-resolution screen, two pixels on
the new high-resolution Retina screens.

	

Or you can use the zoom buttons in the bottom right corner
of the window. Alternatively, you can set the zoom value
numerically by entering a point height in the field between
the buttons. The value specifies at which size 1000 font units
will be displayed. Since Mac OS X assumes a screen resolution
of 72 ppi, one point corresponds to one actual screen pixel,
so if you enter a value of 1000, one unit will zoom to one
pixel. On Retina displays, zooming is done according to their

Tip: You may need to change
your Spotlight shortcut in the

System Preferences for the Cmd-
Space shortcut to work in Glyphs.

� Glyphs Handbook, July 2016   33

higher resolution, e.g., at 144 ppi, a unit will be zoomed to two
screen pixels.

3.6.2	 Panning
You can use trackpad panning gestures, i.e., dragging two
fingers across your trackpad, to change the canvas excerpt of
the window. Use the wheel of your mouse to scroll vertically,
hold down Shift to scroll horizontally. Or, drag the scroll
bars on the right and bottom edges of the displayed canvas.
If you have difficulties grabbing the scroll bars, consider
changing the scroll bar behavior in the General section of
System Preferences. Alternatively, you can switch to the Hand
tool (shortcut H) and drag the canvas around, or simply
hold down the space bar to temporarily switch to the Hand
tool. If you are in text mode, simply pressing the space bar
would add a space to your sample text. To avoid that, you can
press Cmd-Space and subsequently release the Command key.

3.6.3	 View Options
In the View menu, you can toggle several options that
influence the glyph display in Edit view.
 • � Show Nodes displays on- and off-curve nodes of paths,
 • � Show Metrics shows the vertical and horizontal metrics of

the glyph,
 • � Show Hints displays PostScript hints,
 •  Fill Preview displays closed paths with a black fill.
Many third-party reporter plugins are available for changing
or enhancing the glyph display in Edit view. After installation,
they will also show up in the View menu. See section 16.2,
‘Plugins’ (p. 172), for more details.

3.6.4	 Glyph and Layer Colors
In Edit view, you can set both glyph-wide and layer-specific
label colors via the context menu. Right- or Ctrl-click

Tip: Cmd-Space may
interfere with the system-

wide shortcut for invoking
Spotlight. You can change it

in the System Preferences.

� Glyphs Handbook, July 2016   34

anywhere in the canvas of an active glyph, and pick the color
from the context menu.

	

If you hold down the Option key, the Set Layer Color option
becomes active, and picking one of the colors will change the
layer color rather than the glyph color. Both glyph and layer
colors will be displayed in the gray Info box (View > Show Info,
Cmd Shift-I):

	

The glyph color is displayed on the left half, the layer color
on the right half. This correspoonds with the display of label
colors in Font view. See section 6.3.5, ‘Color Label’ (p. 71).

3.7	 BACKGROUND
Each layer has a background layer, usually simply referred
to as ‘background’. The background is useful for temporarily
storing a path, or for tracking changes and comparing outlines
before and after a manipulation. Some filters, such as Filter >
Hatch Outline, use the background as backup layer in order to
work non-destructively.
	 While working in the foreground, objects on the
background can be displayed as subtle gray outline with View >
Show Background (Cmd-Shift-B). If this option is active while
you are working in the background, the foreground objects
will be displayed this way. When the background is displayed,
snapping will also work with objects on the background layer.
	 To switch to the background, choose Paths > Edit Background
(Cmd-B). The window display will darken slightly to indicate

� Glyphs Handbook, July 2016   35

that you are in the background layer. You can set a different
color in Glyphs > Preferences > User Settings.
	 Paths > Selection to Background (Cmd-J) replaces the
current content of the background with the active selection;
this works in reverse when the background is active.
Simultaneously holding down the Option key changes the
command to Add Selection to Background (Opt-Cmd-J), and
copies the current selection to the background without
clearing it first. Paths > Swap with Background (Ctrl-Cmd-J) will
exchange the foreground with the background. You can empty
the background layers of selected glyphs by holding down
the Option key and choosing Paths > Clear Background. When
applied to multiple glyphs at once, these commands work on
complete layers, i.e., ignoring individual path selections.
	 Via Paths > Assign Background, you can copy the outlines
of another font file into the background layer of all selected
glyphs. You can also put the same font into its own
background in order to keep track of your own changes.
Selecting all glyphs and choosing Paths > Selection to Background
(Cmd-J) has the same effect.

3.8	 ENTERING TEXT
The Edit view also acts as a simple text editor, and as such,
allows you to edit your glyphs in the context of a whole word
or even a sentence. As long as the Text tool (T) is active, it
accepts input via the current input source set in the System
Preferences, the Keyboard Viewer, the Character Viewer,
but also via the clipboard or Edit > Special Characters. With
Edit > Start Dictation (Cmd-Cmd), you can even use the speech
recognition features provided by OS X and dictate your text.
	 The Edit view has a preset linewidth. You can set the
maximum linewidth in the application preferences. Select
Glyphs > Preferences > User Settings and edit the Text View Width
value accordingly. The value is in design units. Their relation

Tip: To quickly switch back
from text entry to editing the

current glyph, press the Esc key.

� Glyphs Handbook, July 2016   36

to the em size is defined by the Units per Em value in File >
Font Info > Font.

 	

Keep in mind that a lot of text in the Edit area will slow down
the application, especially if the Preview is displayed. If you
want to test your font with large chunks of text, it is advisable
to use the Adobe Fonts folder, see section 3.12.7, ‘Previewing in
Adobe Applications’ (p. 49) for further details.

3.8.1	 Sample Texts

	

You can edit and store any number of sample texts in Glyphs >
Preferences > Sample Strings (see 2.1.3, ‘Sample Strings’, p. 13).
To make an Edit tab display any of these texts, choose Edit >
Select Sample Text (Opt-Cmd-F). In the appearing dialog, use

� Glyphs Handbook, July 2016   37

your arrow keys or click on a line to pick the sample text and
press Return or click the OK button afterwards.
	 To switch to the next or previous sample string without
invoking this dialog, choose Edit > Other > Select Next Sample
String or Select Previous Sample String, respectively. You can
assign keyboard shortcuts in System Preferences.

3.8.2	 Text Tool
Select the Text tool (shortcut T) to switch to text mode
and start typing. You can enter multiple words, complete
sentences, even line breaks. You can copy and paste text into
and from the Edit tab. The arrow keys, the Edit commands and
OS X Application Services work as they would in any Mac app.
	 The current glyph is the one to the right of the cursor.
You can switch to the previous or next glyph in the font by
pressing the Home and End key, respectively. Add Shift to
advance through the glyphs as they are currently visible in
the Font tab. This is useful when you filter glyphs in the Font
view and then want to step through each one of them.
	 Edit > Add Placeholder (Cmd-Opt-Shift-P) inserts a
placeholder for the current glyph. Placeholders are
dynamically replaced by the currently selected glyph. This
is useful when editing sidebearings, and you want to see the
same glyph between others and next to itself at the same
time. E.g., you can switch from ‘ononnoon’ to ‘omommoom’ if
the n glyphs are placeholders.
	 To insert one or more glyphs that you cannot or do not
know how to type with the keyboard, choose Edit > Find >
Find … (Cmd-F). In the dialog that appears, enter the glyph
name, a part of it, or different parts of the glyph names
separated by spaces. The dialog will show a list of available
glyphs whose name contain the strings you entered. E.g.,
‘dier 01’ will find all glyphs that have both ‘dier’ and ‘01’ in
their name, like adieresis.ss01 and edieresis.cv01. Select the
glyphs you want and press Return or click the Select button
to insert it into your sample text. To select a range of glyphs,
hold down the Shift key. For a non-contiguous selection, hold
down the Cmd key.

Tip: On a MacBook, you can
simulate Home and End
by pressing Fn-leftarrow

and Fn-rightarrow.

� Glyphs Handbook, July 2016   38

3.8.3	 Writing Direction
In Edit view, switch between left-to-right, right-to-left, and
top-down with the respective alignment buttons in the
bottom right corner of the application window.

	

3.9	 MEASURING
Glyphs offers several ways to determine coordinates and to
measure distances between points and curves.

3.9.1	 Info box
You can toggle the display of the gray Info box with View >
Show Info (Cmd-Shift-I). The Info box always displays data
relevant to the current selection. If there is exactly one node
selected, its coordinates will be displayed.

	

Select a handle (off-curve point, Bézier control point), and the
Info box will also show its delta values (x and y difference
to the on-curve point) and the total length of the handle
(distance to the on-curve point).

	

If you select more than one point, be it on- or off-curve
points, the Info box will display the width (↔) and the
height (↕) of the box defined by the current selection. The
x and y coordinates displayed describe the position of the
bounding box of the selection as indicated by the grid, i.e., the
bottom center point of the grid indicates that the coordinates
describe the bottom center point of the bounding box. The
two numbers to the right indicate the count of nodes in the
current glyph, and in the current selection, respectively.

	

Tip: To quickly and precisely
measure a stem or bowl

width, select two nodes that
indicate the width and see
what the Info box displays
next to the width symbol.

� Glyphs Handbook, July 2016   39

In the Info box, any displayed number (except for the node
counts) can be selected and changed by entering a new value.
You can use the Tab key to advance to the next number
slot displayed, and Shift-Tab to switch to the previous slot.
Changes take effect once you press Return or tab out of a value
field. Alternatively, you can use the up and down arrows for
increasing and decreasing the number by one unit. Add Shift
for increments of 10. If you scale a selection this way, the lock
symbol toggles proportional x/y scaling, and the grid controls
the scaling origin.
	 When a component is selected, the Info box will display the
name of the original glyph the component points to, its x and
y offset, its horizontal and vertical scale in percent, and its
counter-clockwise rotation angle. The little arrow button in
the top right corner will insert the original glyph in the Edit
tab string, to the left of the current glyph, and activate it for
editing. For more details on working with components, see
section 8, ‘Reusing Shapes’ (p. 98).

	

You can change the glyph the component points to by clicking
on its name in the gray Info box, and choosing another
glyph from the glyph list in the subsequent pop-up window.
Change position, size, and rotation by manipulating the
respective number values. Use the up and down arrows to
step through values, and add Shift or Cmd for increments
of 10 or 100, respectively. Changing the position only has an
effect if the component is not automatically aligned. For more
details on automatic alignment, see section 8.1.7, ‘Automatic
Alignment’ (p. 103).

� Glyphs Handbook, July 2016   40

3.9.2	 Measurement Tool
Switching to the Measurement Tool (shortcut L) allows you
to see all coordinates of all nodes and anchors at once.

	

-210, -250

69, 229

210, -251

279, -22

210, 251

 489, 229

-210, 250

 279, 479

121, -171

 400, 229

-121, -172

 279, 57

-121, 172

158, 229

121, 171

279, 400

The blue numbers are the x and y coordinates of the on-
curve points, the red numbers are the x and y delta values
between the on-curve points. These values help you check the
symmetry of your curves.
	 Clicking and dragging draws a ruler that displays precise
measures between all of its intersections with outlines.
Add Shift to drag a horizontal or vertical ruler. At the end
of the ruler, its angle is displayed in counter-clockwise
degrees, where zero degrees corresponds to dragging the ruler
completely horizontally to the right.

	

Allegra Gerade.glyphs - abc Allegra

Font ïb ïf ïj ïk ïl ït Iï iï /f_k.liga ◆/e.sc/oe.sc/… s12nⁿ col/periodcen… CGOQS/dotac… Á/acutecomb.… /acutecomb.c… Ysop Ytong Y… noðnnisnoonl… colk/periodce… k

-158, 0333, 446

-115.4, -204

214, 242

131.2, -242

341, 0
164, 0

 505, 0

-184.3, 303

326, 303

1.1, -122

325, 181

161.4, 265

 491, 446

-145, 066, 735

-0.2, -735

53, 0
146, 0

 199, 0

-0.8, 735

 211, 735138.5, 735

249, 0

34.3

143.0

54.9

15.4°

006Bk

n (57)
496h

Kerning
k

Kerning -13

Features 2428 pt

The x delta values respect the
italic angle set in Font Info. So,

an x delta of zero indicates a
line exactly in the italic angle.

� Glyphs Handbook, July 2016   41

The Measurement Tool works on all visible glyphs in Edit
view. So, you can drag a measurement line across multiple
glyphs and see the individual distances:

	

Allegra Gerade.glyphs - abc Allegra

Font ïb ïf ïj ïk ïl ït Iï iï /f_k.liga ◆/e.sc/oe.sc/ae… s12nⁿ col/periodcent… CGOQS/dotacc… Á/acutecomb.c… /acutecomb.case Ysop Ytong Yuma noðnnisnoonlvæn col/periodcent…

-146, 065, 660

-0.5, -660

53, 0
147, 0

 200, 0

-0.5, 660

 211, 660
142, 620

129, 0

208, 446

89.8 146.5 36.3 175.3 40.0 146.5 116.3 61.8
0.0°

006Cl

n (57)
261h

Kerning
l

Kerning n (57)

Features 480 pt

You can temporarily activate the ruler and the display of point
coordinates by simultaneously holding down Ctrl, Option
and Command. Pressing the G key while dragging a ruler adds
a guideline in measurement mode.

3.9.3	 Measurement Guidelines
Any guideline, even a global guideline, can be turned into a
measurement guideline. Simply click on the guideline to select
it, and then, click on the measurement symbol in the gray
Info box. You can handle measurement guidelines exactly as
regular guidelines, see section 3.5, ‘Guidelines’ (p. 30) for
more details.

	

Similar to the Measurement tool, guidelines in measurement
mode will display the distance between their intersections
with outlines or components. Contrary to the tool, they

� Glyphs Handbook, July 2016   42

always do so as long as guidelines are shown, no matter which
tool is active.

	

98.3

195.8

91.0

248.9

3.9.4	 Measurement Line
When you are in text mode, you can enter measurement mode
by choosing View > Show Measurement Line. The measurement
line will display the sidebearings at a given height, ignoring
the shape of the glyph at other positions. More precisely, the
numbers displayed indicate the distance between the left or
right sidebearing and the point where the measurement line
first crosses the glyph outline. You can alter its height by
Ctrl-Opt-Cmd-clicking or Ctrl-Opt-Cmd-dragging. Or you can
switch to the Measurement tool (L) and simply drag it to the
desired height.
	 In measurement mode, thin gray lines indicate the widths
of the glyphs. Kernings receive a color code. Negative kernings
will be displayed light blue, positive kernings yellow. You can
change the colors in Glyphs > Preferences > User Settings.

	

215 215 55 55 85 180 116.7 117.3

� Glyphs Handbook, July 2016   43

3.10	 ANNOTATING
The Annotation tool     (shortcut A) allows you to add
simple notes and correction marks to your drawings. Once
you activate the tool, the gray Info box (View > Show Info,
Cmd-Shift-I) will turn into a little palette holding a range of
annotation tools.
	 Choose Edit > Select All (Cmd-A) to select all annotations in
the currently active glyph layer. Move selected annotations
with the cursor keys. Hold down Shift for increments of 10,
and Cmd for increments of 100 units. Press the Delete key to
remove all selected annotations.

	

3.10.1	 Annotation Cursor
The first tool on the Annotation palette is a simple edit
tool for annotation marks. It allows you to activate, move,
and resize existing annotations. Shift-click to select more
annotations. Once an annotation mark is activated, you can
delete it by pressing the Delete key.

3.10.2	 Annotation Text
The second tool from the left is a simple text tool. Activate
it by clicking on the T button and then click anywhere on
the canvas to add a text box. Double click on the text and
start typing. When you’re finished, just activate the next tool
you want to work with. You do not need to acknowledge the
text entry.

	

Is there a kink in the curve?

The handle on the right controls the width of the text box. The
height of the box always automatically adjusts to the length of
the entered text.

� Glyphs Handbook, July 2016   44

3.10.3	 Annotation Arrow
The third tool on the Annotation palette allows you to put red
arrows on the canvas. The handle on the arrow stem controls
the rotation of the arrow.

	

3.10.4	Annotation Circle
The fourth tool puts red highlighting circles on the canvas. The
handle at the bottom of the circle controls the diameter.

	

3.10.5	 Plus and Minus Annotations
Many designers use plus and minus signs to indicate that a
counter, a bowl or a stem needs to be thickened or thinned,
respectively. Click on the plus or minus button and then on
the canvas to add the symbols to the editing area.

	  

3.11	 IMAGES

3.11.1	 Adding Images
You can add all image files supported by OS X, including PDFs,
to any glyph layer simply by dragging them onto a glyph cell
in Font View, or into the active glyph in Edit View. You can
add many images at once by choosing Glyph > Add Image and
selecting any number of image files in the subsequent Open
File dialog. The images will be placed in the current master
layers of those glyphs that correspond to the file names.
E.g., if your scans are called Thorn.png and thorn.jpeg, they
will be placed in the glyphs Thorn and thorn, respectively.
For this to work, you may have to place scans for uppercase
and lowercase letters in separate folders. That is because, by

� Glyphs Handbook, July 2016   45

default, the OS X file system is set to be case-insensitive, and
thus, same names with different capitalizations cannot coexist
in the same OS X folder.
	 In the Glyphs document, only the relative path of the image
is stored. Thus it is a good idea to keep them in a subfolder
next to the Glyphs file. If the path to the placed image is
outdated or broken, it will be indicated with a missing
image symbol:

	

You can toggle the display of images via View > Show
Image. Even if this setting is off, images will be displayed
as long as the glyph is empty, i.e., contains neither paths
nor components.
	 Image files will be ignored at OTF export unless you export
a bitmap image font, like an Apple-style color font. See section
13.4, ‘Apple Color Fonts’ (p. 155) for details.

3.11.2	 Manipulating Images
By default, images will be scaled to a size where one DTP
point corresponds to one font unit, and placed at the origin
point of the layer. If you plan to place a lot of images, consider
preparing their size accordingly.
	 Move the image by dragging it to the desired position. When
an image is selected, you can resize it with the bounding box
(Cmd-Opt-Shift-B) or the Scale tool (S). You can rotate it with
the Rotate tool (R). The Transformations palette also works
for images.

	

The gray Info box (Cmd-Shift-I) allows you to numerically
control position (x and y) and dimensions (↔ for width, ↕ for
height) of the selected image. You can also rotate the image
counter-clockwise by manipulating the degree figure next to

� Glyphs Handbook, July 2016   46

the curved arrow symbol. A click on the right-pointing arrow
symbol will reveal the original image file in Finder. A click on
the lock symbol freezes the image status until you unlock it
again via the context menu.
	 Besides locking and unlocking an image, the context menu
lets you crop the image to the layer bounds (width, descender,
and ascender), and reveal the image file in Finder.

3.12	 PREVIEWING AND TESTING

3.12.1	 Previewing Kerning
Kerning Preview is on by default. You can activate and
deactivate kerning with the Preview Kerning button in the
bottom right corner of the window. Clicking the button
toggles between no kerning, kerning, and locked
kerning. The no-kerning setting disables the display of kerning
altogether. The kerning and locked-kerning settings both show
kerning, but the latter disables the editing of the spacing.
This can be useful if you want to edit the kerning without
accidentally manipulating spacing.

3.12.2	 Previewing Masters
The Edit view already is a preview of the master(s). It always
previews the anti-aliased outlines and the kerning of the
currently selected font master. When the Glyphs file contains
more than one font master, a button row representing each
master is displayed in the top left of the window. Switch
between masters by clicking on these master buttons, or by
pressing Cmd and the number of the master you want Glyphs
to display, e.g., Cmd-1 and Cmd-2 for the first and second
master, respectively.

	

For more details on working with multiple font masters, see
chapter 12, ‘Multiple Masters’ (p. 141).

3.12.3	 Previewing Path Offset
Via View > Show Preview Offset, you can toggle a gray preview
of the offset the Offset Curve filter would produce with its
current settings. This is useful for an open paths workflow.

� Glyphs Handbook, July 2016   47

For the preview to take effect, Filter > Offset Curve must have
been run at least once. The preview only applies to the
current glyph.

	

3.12.4	 Previewing OpenType Features
You can activate and deactivate OpenType features through
the Features menu at the bottom left of the window in Edit
view. When at least one feature is selected, the Features menu
will be highlighted. The button will show the four-letter tags
of the active features.
	 You may need to recompile the features in File > Font Info >
Features before they are available in the pop-up list. You can
select any number of features concurrently, and deselect all of
them at once by choosing the dash at the top of the menu.
	 To preview language-specific forms, first choose Localized
Forms from the menu. Subsequently, you can preview a script
or language at the bottom of the menu. For this to work, a
‘locl’ feature with valid language-specific rules must be present
in File > Font Info > Features.
	 In Edit view, Glyphs will show a preview only of
substitution features, since positioning features can be
handled very differently in different application, application
settings, and system environments. To test positioning
features other than kerning, it is therefore recommended to
make use of the Adobe Fonts folder. For details, please see
section 3.12.7, ‘Previewing in Adobe Applications’ (p. 49). If
you preview in InDesign, note that OpenType features may be
interpreted differently in different composers.

3.12.5	 Previewing Interpolated Instances
Click on the Preview button (with an eye symbol), next to
the Features drop-down menu. The window content will be
sectioned vertically, with the Edit view at the top, and the

A lowercase script p with
Preview Offset enabled (left)

and disabled (right).
The offset value is taken

from the settings used the
last time the Offset Curve

filter has been run.

� Glyphs Handbook, July 2016   48

Preview Area at the bottom. Drag the separator line to adjust
the size of the Preview.
	 Alternatively, you can open a separate window via
Window > Preview Panel. You can move the Preview Panel to
a separate display connected to your Mac. The controls will
fade out once you move your mouse out of the window. The
Preview Panel will display a preview for the current Edit tab
of the current font file. Since the panel is detached from the
document windows, it can go blank if no active Edit tab can
be determined. In that case, simply click into an Edit area to
activate it, and the Preview Panel will update its contents.
	 To see a live interpolation of an instance, pick an instance
from the instances pop-up below the Preview Area, or at
the bottom of the Preview Panel. The menu item Show All
Instances renders the current glyph in all active instances next
to each other. You can activate and deactivate instances in
the Font Info, see section 7.3, ‘Instances’ (p. 90) for details.
Once you select the dash at the top of the menu, the Preview
will be reset to a rendering of the current master rather than
an instance.
	 With the exception of the Show All Instances option, the
Preview Area and Preview Panel render the complete text of
the current Edit tab on a single line, and center on the current
glyph. You can double click a previewed letter to make the
Edit view center on it. The rendering respects some custom
parameters, as well as the brace and bracket tricks described
in the section 4.4.2, ‘Special Layers’ (p. 53).
	 Right-clicking into the Preview area yields a context menu
that gives you the option Always Center Active Glyph. When
activated, the currently active glyph appears centered at all
times. If deactivated, Glyphs will try to fill the Preview area as
well as possible, keeping the text flush left or right.
	 You can switch between black-on-white and white-on-black
with the Invert button next to the instances pop-up. With
the ‘F’ button, you can flip the Preview upside-down. This can
be helpful when testing the spacing of your font. To test the
legibility of your design, you can use the slider to blur the font
sample in the Preview.

3.12.6	 Previewing in OS X
Because of the complicated font caching mechanism employed
by OS X, simply overwriting a previously installed font can

� Glyphs Handbook, July 2016   49

lead to a range of problems. Amongst other things, the font
may not show the changes you made in Glyphs, or may
show wrong glyphs for the characters typed, display empty
or garbled glyphs, or even disappear from the font menu. In
order to avoid such font cache difficulties, you can change the
family name in File > Font Info > Font (Cmd-I) every time you
export, e.g., by adding an incremental number (‘MyFont 01’,
‘MyFont 02’, ‘MyFont 03’ etc.) or a letter combination
(‘MyFont AA’, ‘MyFont AB’ etc.). This scheme ensures a more
consistent font menu ordering if you have many versions of
your font installed.
	 If you do run into cache problems, close all running
applications and remove all instances of your font from Font
Book or the Fonts folder. Then, open the Terminal application
and type these lines, each of them completed by pressing
the Return key. The first command will prompt you for your
administrator password. You will not see bullets while you
type your password.
	 sudo atsutil databases -remove
	 atsutil server -shutdown
	 atsutil server -ping
After these Terminal commands, you need to restart the Mac
for the changes to take effect. If the problems persist, boot the
Mac in safe mode, i.e., hold down Cmd-S at startup until the
Apple logo appears on screen. Recreate caches by holding down
the Shift key while restarting and logging in.

3.12.7	 Previewing in Adobe Applications
For a complete preview including things like positioning
features and menu ordering, just pick File > Export (Cmd-E),
pick the OTF export, and choose /Library/Application
Support/Adobe/Fonts/ as Export Destination. The font
becomes immediately available in all Adobe applications. Any
previously saved instance of the font in this folder will be
overwritten. The font will not be available outside Adobe apps,
but this is a convenient way to circumvent any font cache
problems in OS X.
	 If the Fonts folder does not exist, you can create it right
in the Open Folder dialog by pressing Cmd-Shift-N. Only in
case they were already running while the folder was created,
you have to restart Adobe apps this once for the change to

Because of the described
difficulties with the OS X

font cache, we do not
recommend testing unfinished

fonts in Font Book.

� Glyphs Handbook, July 2016   50

take effect. After that, the Adobe font menus will update
immediately every time the font is exported.

	

3.12.8	 Previewing in Web Browsers
You can also export webfonts via File > Export > Webfonts. For
repeated exports, you can set an Export Destination in the same
dialog. If you set up an HTML file containing a test page that
uses the webfonts. Open the file in a web browser, and reload
the page every time a new version of the font was exported.
Since the webfont files are overwritten during the export,
reloading the page in the web browser should show the new
version of the font. Some web browsers also employ font
caches, though. If a reload does not show the new font, most
Mac browsers offer you to force a clean reload of the page
by holding down the Shift key while clicking on the reload
button, or in addition to the keyboard shortcut for reloading
(usually Cmd-R).

� Glyphs Handbook, July 2016   51

4	 Palette
4.1	 PALETTE SIDEBAR

You can open the Palette sidebar with the sidebar button in
the top right corner of the window, or via Window > Palette
(Opt-Cmd-P). By default, the Palette has four sections. You
can collapse or expand them by clicking on their title or the
triangle next to it. The sidebar can be extended with third
party palette plugins.

4.2	 DIMENSIONS
The entries in the Dimensions section have no effect on the
font. They serve as a cheat sheet for your personal design
process. You can enter values for a couple of crucial measures
in your current layer. Values are stored per master. For
non-Latin scripts, such as Thai or Devanagari, appropriate
dimensions are displayed as soon as a glyph of the respective
script is selected in Font view or active in Edit view.

4.3	 FIT CURVE
The Fit Curve panel helps creating curves with matching or
corresponding curvatures. In most instances, the collapsed
(i.e., single line) view will do. Select percentages by setting
the left field to the minimum value and the right field to the
maximum value. The eight buttons in between represent
equal steps between these two values. Alternatively, you
can use Ctrl-Opt-1 through 8 as keyboard shortcuts for the
buttons. For the Fit Curve function to take effect, at least one
handle must be selected. Fit Curve also works on multiple
segments, provided that at least one handle of each segment
is selected.
	 The numbers describe the percentage length of the handle.
The distance from the curve point to the intersection of the
handles equals 100 percent. 56 percent give you an elliptic
curvature. The minimum value you can set is 1 percent, the
maximum value is 100 percent. If you want a completely flat
segment, select one of the handles and press the Delete key in
order to turn the segment into a line.
	 For (rare) cases where you need finer tuning, click the little
triangle to expand the Fit Curve panel into two dimensions. In
that case, the first handle on each curve segment is controlled
by the x axis, while the second one is controlled by the y axis.

Smaller curves, e.g. counters,
generally need higher curvature

percentages than larger curves,
e.g., on the outside of a bowl.

� Glyphs Handbook, July 2016   52

The order of handles is controlled by the path direction of the
path in question.

4.4	 LAYERS
Glyphs differentiates between two sorts of layers: master
layers and normal glyph layers. Master layers are needed for
interpolating instances, or for keeping font variations. All
glyphs in a font will always have layers for all font masters set
in File > Font Info > Masters. In the Layers section of the Palette,
master layers are displayed with the respective font master
name in bold type.
	 Layers have an eye symbol next to them. It serves as a
toggle button for the display of the layers. In its active state
(indicated with an opened eye), the paths and components
on the respective layer will be displayed with a gray outline
behind the current layer, similar to background paths.
Likewise, a closed eye indicates that the layer will not be
displayed in the background.
	 Normal glyph layers are displayed in regular type, indented
below the respective master layer they are associated with.
You can have any number of normal glyph layers in a glyph.
Use them for keeping variations of the respective glyph, for
special techniques such as Brace or Bracket layers, or for
creating color fonts. See chapter 13, ‘Color Fonts’ (p. 151) for
more details.

4.4.1	 Working with Layers
Font master names cannot be edited through the Palette. They
are controlled via File > Font Info > Masters.
	 Select a master layer and click the Copy button to duplicate
it as a normal glyph layer. A copy of the master layer will
appear below the master layer, carrying the name of the
master and the creation date. Double click the layer name to
edit it. To delete a layer, select it and click the minus button
below. To swap it with the master layer, click the gear button
and select Use as Master from the menu that pops up.
	 The Re-Interpolate menu item resets a selected layer on the
basis of at least two other available master layers in the glyph.
This is especially useful for Brace layers. See section 12.7, ‘Brace
Layers’ (p. 149) for details.

� Glyphs Handbook, July 2016   53

4.4.2	 Special Layers
The name of a layer can determine a special function. Some
layers have a special meaning in Multiple Master setups,
namely so-called Brace layers (section 12.7, p. 149) and Bracket
layers (section 12.8, p. 149). Chromatic fonts also require a
special layer setup. See chapter 13, ‘Color Fonts’ (p. 151), for
more details.
	 Third-party plugins may require special layers for
their function. Refer to their documentation for further
information.

4.5	 TRANSFORMATIONS
The bottom section of the palette is reserved for object
transformations. Once you have set the transformation origin,
you can, from top to bottom:
 • � mirror the selection horizontally or vertically,
 • � scale the selection down or up, horizontally and/or

vertically, by percentage values,
 • � rotate the selection counterclockwise or clockwise

by degrees,
 •  skew the selection left or right by degrees,
 • � align nodes, complete paths or components to each other,
 •  and execute boolean operations with two paths.
The transformations work in both the Font and the Edit
view. Depending on the selection, the transformations work
on paths, parts of paths, or complete glyph layers, even
when multiple glyphs are selected. Note that, if you execute
a transformation while a unit grid is active (see 7.5.1, ‘Grid
Spacing and Subdivision’, p. 96), the placement of the on-
curve nodes will be subject to rounding.

4.5.1	 Transformation Origin
Except for aligning, all transformations available in the palette
respect the transformation origin you set in the top row. This
can either be a grid point calculated relative to the bounding
box of the selection, similar to the grid in the gray Info box
(Cmd-Shift-I).
	 Or, it can be a manually set reference point. To change
the reference point, you need to switch to either the Rotate
(shortcut R) or the Scale (shortcut S) tool, and click once in
the canvas.

� Glyphs Handbook, July 2016   54

	 Or, it can be one of the metrics taken from the entries
in File > Font Info > Masters (Cmd-I): baseline, (half or full)
x-height and (half or full) cap height.

4.5.2	 Mirroring
Mirroring can be applied to point selections, complete selected
paths, and selected components, or any combination thereof.
Mirroring a corner component will turn a left corner into a
right corner and vice versa.

4.5.3	 Reversible Transformations
The corresponding buttons to the left and right of the
Scale, Rotate, and Skew fields, are each other’s reverse
transformations. Thus you can reverse any of the transforms
with their complimentary buttons, and the points will assume
their previous position, even when a unit grid is in effect and
rounding has been applied to point coordinates.
	 Scaling takes two percentage values, for horizontal (x) and
vertical (y) scaling, respectively. When the lock symbol is
closed, the second value will be ignored and the first value
applies to both x and y scaling. The entered values refer to
positive scaling which is activated by pushing the upscale
button. This means that the reverse-scale button does not
scale down by the entered values, but reverses the positive
transformation. This way, you can always undo a positive
scale with the reverse-scale button and vice versa.
	 The Rotate and Slant functions work on any selection.
Again, the buttons compliment each other, by reversing each
others’ transformations.

4.5.4	 Aligning
The Align buttons work on complete and partial paths, as well
as components. If a path is selected only partially, the selected
nodes are aligned to each other. Aligning via the buttons is
always done relative to the bounding box of the selection.
	 For most use cases, a quicker way to align selected points is
Paths > Align Selection (Cmd-Shift-A). This command respects
the grid setting for the transformation origin. See section 3.3,
‘Editing Paths’ (p. 18), for more details.

Tip: If you copy and paste
the paths of the lowercase

n into your lowercase u,
you can mirror horizontally

and vertically around
half the x-height, rather

than around the selection
center. This way, the

overshoot is respected.

If you want to scale down all
coordinates by half, you need
to enter 100 percent and click

the reverse-scale button,
or enter 50 percent and click

the upscale button.

� Glyphs Handbook, July 2016   55

4.5.5	 Boolean Operations
The bottom row of buttons allows for boolean operations:

 union, subtraction, and intersection. Union and
intersection work with the selected paths, or all paths if none
are selected. The subtraction operation subtracts the selected
paths from the unselected ones. Or, if no paths are selected, it
subtracts the front-most, i.e., last, path from all others on the
glyph layer. In order to achieve consistent results, both groups
of paths involved, i.e., either the selected and the unselected
paths, or the front-most and all other paths, are merged before
the subtraction is executed between them.

 

From left to right:
(1) two overlapping paths

before the boolean operation;
(2) union; (3) subtract;

(4) intersection.

� Glyphs Handbook, July 2016   56

5	 Filters
5.1	 FILTERS

Filters process glyph layers. Their functionality ranges from
simple width transformations to randomized distortions of
the outlines.

5.1.1	 Filters Menu
In Edit view, you can apply filters to the active layer, or,
with the Text tool (shortcut T), to the displayed layers of any
number of selected glyphs. In the Font view, you can apply
it to all selected glyphs at once. Filters usually only affect
visible glyph layers. So if you want to apply the same filter
to all glyph layers, you will need to run the filter again for
each master.

5.1.2	 Filters as Custom Parameters
Most filters can also be applied to a font instance at export
time by means of a custom parameter. To set up a custom
parameter, select the instance in question in File > Font
Info > Instances, add a parameter in the Custom Parameters
section, switch its Property to ‘Filter’. Then, set the Value to
the parameter name of the filter in question, followed by
semicolon-separated arguments: parameterName; value1;
value2 . Sometimes, the arguments are prefixed by an
argument name, especially in filters where the arguments
are optional: parameterName; argument1: value1; argument2:
value2 . You can limit the effect of the filter to certain glyphs
with an additional include: argument followed by comma-
separated glyph names. Analogously, you can apply the
filter to all but certain glyphs with the exclude: argument,
e.g., GlyphsFilterOffsetCurve; 5; 5; 1; 0.5; exclude:a,b,c . For
better legibility, you can add whitespace characters around
the arguments. You can add multiple filter entries to the
custom parameters of an instance, and drag them into a
specific order to combine their effects.
	 Most Filter dialogs sport a gear menu in their lower
left corner of the window. You can quickly copy a custom
parameter with the current values into the clipboard by
choosing Copy Custom Parameter from the gear menu. Before
pasting the parameter in File > Font Info > Instances (Cmd-I),

� Glyphs Handbook, July 2016   57

you need to click once in the Custom Parameters field to set the
focus, i.e., the target for the clipboard operation.

5.2	 BUILT-IN FILTERS

5.2.1	 Fix Compatibility
This filter provides a graphical user interface for reordering
paths and components. Paths are shown in blue, components
in a rust color. Every line in the grid represents an object
position, every column a master, bracket or brace layer of
the glyph. Drag the objects vertically into the same order for
all layers. When you are done, press Fix to confirm the new
ordering of objects in the glyph.
	 If there are multiple, separated interpolations, they are
separated by a vertical gray gutter. This can be the case
with Brace layers (section 12.7, p. 149). It can also occur
in more complex master setups, where, e.g., all condensed
masters interpolate within each other, and all extended
masters interpolate within each other, constituting two
separate, unrelated lines of interpolation within the
same glyph. Fix Compatibility is useful for cases where the
automatic reordering through Paths > Correct Path Direction
for All Masters (Cmd-Opt-Shift-R) does not yield the desired
master compatibility. It is also useful when the display of
View > Show Master Compatibility (Cmd-Opt-Ctrl-N) becomes
too complicated, and it is too hard to keep the oversight.
This can be the case in complex glyphs with many paths
or components.

	

5.2.2	 Hatch Outline
Creates hatched letters. Distance, width, and angle of the
hatch-lines can be chosen. Glyphs always uses the background

� Glyphs Handbook, July 2016   58

path as source. If there is no path, Glyphs will put a copy of
the current path into the background. Alter the appearance of
the hatching by changing the background path and applying
the filter once again.

	

With the Origin option, you can change the position of the
hatch strokes. The two fields represent the x and y values of
the construction origin. The Step Width option determines the
distance between individual strokes, and Angle their slant in
degrees. The Offset Path value determines the thickness of the
strokes, much like the Offset Curve filter would. Deactivate the
checkbox next to it to prevent the offsetting, and only insert
straight, open paths as hatch lines. This may be useful in case
you plan additional subsequent transformations.

	

To apply Hatch Outline as a custom parameter, use
the string HatchOutlineFilter; OriginX:<x>; OriginY:<y>;
StepWidth:<distance>; Angle:<angle>; Offset:<thickness> for
the Value of the custom parameter.

5.2.3	 Offset Curve
Changes the thickness of stems horizontally and / or vertically.
The lock sign uses the horizontal value for both horizontal
and vertical expansion. Without the Make Stroke option, paths
will just be moved into a parallel position:

	

� Glyphs Handbook, July 2016   59

With the Make Stroke option, selected paths will be expanded
to closed outlines:

	

The Position setting controls the distribution of the expansion.
At 0%, the path will only expand to the right. At 100%, the
path will only expand to the left. At 50%, the expansion will
be evenly distributed to both sides of the path. Right and left
sides are determined by the path orientation.
With the Auto Stroke option, the vertical dimensions will be
kept intact. In that case, the offset position will be assumed
at 50%.

	

To apply Offset Curve as a custom parameter, use OffsetCurve;
<x>; <y>; <stroke>; <position/auto> for the Value, where <stroke>
can be 1 for yes, and 0 for no, and <position> must be broken
down to a floating point value between 0.0 (equivalent to 0%)
and 1.0 (100%). If you want to use the Auto Stroke option in the
parameter, use the string ‘auto’ as fourth argument.

5.2.4	 Remove Overlap
The Remove Overlap filter has no dialog. When triggered, it
immediately removes overlaps of selected paths, or all paths
if none are selected. It also clears the selected glyph of all
open paths and stray nodes. The filter expects all outline
orientations to be set correctly (see 3.3.12, ‘Controlling Path
Direction’, p. 25). To maintain overlaps in shapes while
editing, you can have overlaps removed automatically at
export with the respective option in the export dialog (see
15.4, ‘Type 1, OpenType, and TrueType’, p. 165). To apply this
filter as a custom parameter, use RemoveOverlap as the Value
without further arguments.

Tip: You can apply the Make
Stroke option to an open path to
get a thickened outline. This way,
you can get an initial outline just

by drawing the internal stroke.

� Glyphs Handbook, July 2016   60

5.2.5	 Roughen
Segments an outline into straight subpaths and randomly
moves the nodes within a given limit. Control the size of the
subpaths with the Segment Length field. The Horizontal and
Vertical values control the maximum offset for each node.
With the Angle value, you can tilt the horizontal and vertical
node transformation. If you use modest values, the resulting
glyphs will receive a roughened look, hence the name:

	

To apply this filter as a custom parameter, use Roughenizer;
<length>; <x>; <y>; <angle> for the Value.

5.2.6	 Round Corners
Use this filter to round all selected corners of a path. To only
round the outside corners, i.e., corners pointing into the white
background, simply select nothing. Supply a Radius value
in units. Use the Visual Corrections option to create a more
natural looking corner rounding. This option increases the
corner radius at obtuse angles, and reduces the radius at acute
angles, yielding a more natural shape.

	

To apply this filter as a custom parameter, use RoundCorner;
<radius>; <correction> for the Value. Use a negative <radius> for
rounding (white) inside corners. The <correction> can either
be 1 for yes or 0 for no.

5.2.7	 Rounded Font
The Rounded Font filter has no dialog. It reads the first vertical
stem of the master, and tries to apply appropriate corner
rounding with overshoots to the selected glyphs.

From left to right: original shape,
rounded shape, and rounded
shape with visual corrections.

� Glyphs Handbook, July 2016   61

	 It can be triggered as a custom parameter with RoundedFont
as the Value and appropriate stem settings in File > Font Info >
Masters. Alternatively, you can supply a different stem value
inside the parameter string: RoundedFont; <verticalStem>.

5.2.8	 Transformations
The window of the Transformations filter sports three tabs:
Transform, Background, and Metrics.

	

Use Transform to horizontally and vertically move, scale,
and skew outlines. For scaling and skewing, you can set the
transformation origin to cap height, half cap-height, x-height,
half x-height, and baseline. Skew without optical correction
by activating the Slant option, or with optical correction using
the Cursify option. Cursify requires correctly set vertical and
horizontal stems in File > Font Info > Masters.

	

Use the slider in the Background tab to interpolate between
front and background paths. The paths need to be compatible.
This is useful if you want to experiment with a feature of
a glyph, e.g., the length of a stroke. You can quickly copy a

� Glyphs Handbook, July 2016   62

path into the background by choosing Glyph > Selection to
Background (Cmd-J).

	

In the Metrics tab, you can set the width and sidebearings of
all selected letters at once. With the Relative option, the values
will be added or subtracted.
	 The Value code for the custom parameter contains
a range of optional arguments: Transformations;
LSB:<±*/‌shift>; RSB:<±*/shift>; Width:<±shift>; ScaleX:<percent>;
ScaleY:<percent>; Slant:<amount>; SlantCorrection:<bool>;
OffsetX:<amount>; OffsetY:<amount>; Origin:<select> . The <shift>
arguments optionally take the indicated prefixes for relative
operations, or will set it to the specified value if no operators
are supplied. The <percent> arguments are the actual
percentage numbers, i.e., 100 means no scaling. For <amount>,
you can use any number, positive or negative, with or without
decimals, <bool> can be 1 for yes (Cursify) and 0 for no (Slant),
and <select> is a number between 0 and 4, representing the
five options of the transformation origin menu.

5.3	 THIRD-PARTY FILTERS
You can extend the functionality of Glyphs by installing
additional filters. You can do so by double-clicking the file
carrying the .glyphsFilter suffix. Glyphs will automatically
copy the filter file into the correct location, the Plugins
subfolder of the app’s Application Support folder. After a
restart of the app, the filter will show up in the Filter menu.
Refer to its documentation for further details.
	 You can uninstall a filter by removing the filter from
the Plugins folder inside the Application Support folder of
Glyphs. The quickest way to navigate there is to open Glyphs >
Preferences > Addons > Plugins (Cmd-comma), then right-click

Tip: You can find a range
of third-party filters on
glyphsapp.‌com/extend

http://glyphsapp.com/extend/

� Glyphs Handbook, July 2016   63

the name of a plugin, and choose Show in Finder from the
upcoming context menu.

	

Many plugins can be installed, kept up to date automatically,
and also uninstalled through the Plugin Manager, accessible
via Window > Plugin Manager. For more information, see
section 16.2.2, ‘Plugin Manager’ (p. 173).

� Glyphs Handbook, July 2016   64

6	 Font View
6.1	 VIEWING GLYPHS

The Font view of the main window displays the glyphs in the
font. Here, you can manage your glyph set. When mutiple tabs
are open, you can activate the Font view by clicking on the
first tab, or pressing Cmd-Opt-1. The Font tab has two viewing
modes, grid view and list view.

6.1.1	 Grid View

	

You can switch the Font view to grid mode by clicking the
grid symbol in the double button in the top left corner of
the window:

	

With the slider in the bottom right corner of the window, you
can control the zoom level of the displayed glyphs. Depending
on the zoom level, Glyphs will display either the glyph images
only, or glyph images with glyph names, or, in large zoom
stages, images, names and Unicode values, if available.
	 The gyph cell shows some extra information about the
glyph. A yellow warning sign in their top right corner
indicates that the glyph contains a metric key which is out
of sync. See section 9.1.2, ‘Metric Keys’ (p. 114) for more
details. Glyphs are shown in their glyph color. Glyphs with
unsaved changes show a slightly darker glyph cell until saved.

� Glyphs Handbook, July 2016   65

A red top-left corner indicates that not all the layers used for
interpolation are compatible with each other. For more details
on how to keep drawings compatible, see section 12.4, ‘Fix
Outline Incompatibility’ (p. 144).

6.1.2	 List View

	

You can set the Font view to list mode by clicking the button
with the list icon in the top left corner of the window:

	

In list mode, each column represents a glyph property. You
can sort glyphs by any of their displayed properties if you click
on the corresponding column header. Click again to reverse
the sort order. Click and drag a header to rearrange columns.
Via the context menu of the column headers, you can control
which columns are displayed:
 • � Char: a representation of the Unicode character with the

system font(s),
 • � Script: the script the glyph is associated with, spelled in

lowercase, e.g., ‘latin’, ‘greek’, or ‘arabic’,
 • � Category and Subcategory: the categories, e.g., Letter, Number,

or Symbol, and subcategories, e.g., Uppercase, Lowercase, or
Space, as far as available,

 •  Width, LSB, and RSB: the horizontal metric values

� Glyphs Handbook, July 2016   66

 • � Left Group and Right Group: the kerning groups for the left
and right sides of the glyphs,

 • � Note: an arbitrary text stored inside the glyph. You can
search for it with the search field,

 • � Components: the component structure of compounds. You
can change the components by typing a new glyph names
in this field,

 • � Last Changed: the date of the last change made inside the
respective glyphs,

 • � Vertical Width: the vertical width, necessary for vertical
scripts like Mongolian.

6.1.3	 Searching for Glyphs
You can choose to view different excerpts of your glyph set
by selecting categories, languages or filters from the left
sidebar. To further narrow down your search, you can enter
a search term in the search field (Cmd-F) at the bottom right
of the window. For more details, see section 6.5.1, ‘Search
Box’ (p. 74)
	 The three numbers to the left of the search field indicate
(from left to right) how many glyphs are selected, how many
are currently displayed, and the total number of glyphs in the
font file:

	

If you cannot see a glyph you are looking for, the current
display settings may prevent the glyph from showing. If that is
the case, first check if there is a selection in the left sidebar, or
simply click on All at the top. Also, a search term may still be
entered and active in the search field. Click in the search field
(Cmd-F), and clear its search string.

6.2	 MANAGING THE GLYPH SET

6.2.1	 Generating New Glyphs
There are several ways to add new glyphs to a font:
 • � Glyph > New Glyph (Cmd-Opt-Shift-N) and the Plus button

at the bottom in Font view add an empty glyph called
‘newGlyph’ to the font. You may need to scroll down to
see it.

� Glyphs Handbook, July 2016   67

 • � Glyph > Duplicate Glyph (Cmd-D) duplicates the currently
selected glyph(s). Because glyph names must be unique
throughout a font, the new glyphs will carry an
incremental number as name suffix, e.g., ‘.001’, ‘.002’, etc.

 • � Glyph > Add Glyphs (Cmd-Shift-G) opens a dialog where
you can insert a list of whitespace-separated glyph
names. Pressing the Generate button will add all of these
glyphs, provided they are not in the font yet. You can
use custom recipes for building compound glyphs. For a
detailed description of component recipes, section 8.1.3,
‘Recipes’ (p. 99). To add all glyphs corresponding to a
range of Unicode characters, type the names of the first and
the last glyph, separated by a colon, e.g., ‘uniE000:uniE0FF’.
Alternatively, you can simply type the characters
themselves, e.g., ‘Ä:ñ’ or ‘ぁ:ゖ’. Glyphs already available
inside the font will be ignored, and you will be notified that
at least some of the glyphs were already there:

	  

 • � Open Window > Glyph Info, then select one or more glyph
descriptions, and click the Add to Font button.

 • � Some entries in the sidebar of the Font view have a number
badge, indicating the number of glyphs already created
versus the total number of glyphs predefined in that
category, language group or filter. Right-click or Ctrl-click
the badge to get a list of all glyphs missing in this category.

Adding glyphs through menu
commands also works in

Edit view. Newly added glyphs
will then be added to the

sample string in the current tab.

For the complete list of
recognized glyph names,

choose Window > Glyphs Info.

� Glyphs Handbook, July 2016   68

Select one or more glyph names, or press Cmd-A to select all
of them, and click Generate to add them to your font:

 

6.2.2	 Copying Glyphs Between Files
You can copy any number of glyphs from one file (the source)
and paste them into another file (the target). Components
will be re-linked to their respective counterparts in the target
font. If a glyph with the same name already exists in the
target font, then the pasted glyphs will be renamed with an
increasing triple-digit suffix, e.g., ‘A.001’, ‘A.002’ etc., avoiding
data loss.
	 If you want to overwrite existing glyphs, you can use the
Paste Special (Opt-Cmd-V) command, which appears in the Edit
menu when you hold down the Option key. A dialog will ask
you what exactly you want to do. First, you are asked about
the target of the Paste operation:
 • � Glyphs with the same name looks for glyphs with the same

glyph names as the ones pasted and will replace them if
present, or add them if not.

 • � Selected glyphs will keep the target glyph names but replace
their contents, including their layer structure. If the
number of selected glyphs differs between copying and
pasting, it will quietly ignore additionally selected target
glyphs or additionally copied source glyphs.

Then, you are asked about what exactly of the copied data you
want to paste into the target glyphs:
 • � All data disables all other options, as everything will be

copied: paths, anchors, components, layers, glyph and layer
attributes, and metrics.

 • � Content of active layer acts like the previous option, but it
ignores all layers except for the one currently displayed.

� Glyphs Handbook, July 2016   69

 •  �Kerning groups only copies the left and right kerning
groups. This is useful for reduplicating kerning between
similar fonts.

 • � Metrics Keys copies only the sidebearing and width formulas
for recalculation. Afterwards, you may need to update the
keys with Glyph > Update Metrics (Ctrl-Cmd-M).

 • � The options LSB, Width, and RSB copy the respective metric
values into the target glyph(s). If you select both Width and
RSB, the value of the right sidebearing will take precedence
over the width value.

	

6.2.3	 Removing Glyphs
Select any number of glyphs in Font or Edit view, and choose
Glyph > Remove Glyph (Cmd-Backspace or Cmd-Delete). This also
works with the current glyph in Edit view. In Font view, you
can also click the Minus button in the bottom section of the
window. Before the respective glyphs are removed from your
font, you will be asked for confirmation:

	

� Glyphs Handbook, July 2016   70

6.3	 GLYPH PROPERTIES
Select one or more glyphs and, if necessary, click on the
second button at the bottom left of the window, and the
glyph properties will be displayed. Some of the properties can
also be accessed through the context menu of one or more
selected glyphs.

 

In List view, glyph properties are displayed and can be
edited in columns. Some properties are only displayed in the
columns of List view. Right-click on the column headers and
tick off the columns you want to see. You can use them as
sort key. Switch between ascending and descending sorting by
clicking on the column title.

6.3.1	 Name
The glyph name can be accessed and changed only if exactly
one glyph is selected. If you want to batch-change the
names of many selected glyphs, you can use Edit > Find >
Find and Replace (Cmd-Shift-F). See section 6.6.3, ‘Renaming
Glyphs’ (p. 82) for more details.

6.3.2	 Width and Sidebearings
The widths as well as the left and right sidebearings can be
accessed and changed for any number of selected glyphs at
once. Changing only the width affects the right sidebearing.

6.3.3	 Kerning Groups
You can set kerning groups for a range of glyphs, see section 9,
‘Spacing and Kerning’ (p. 114), for further details.

� Glyphs Handbook, July 2016   71

6.3.4	 Exports
The glyph will appear in the exported font only if this check
box is enabled. This is useful for keeping glyph variations or
glyph components from ending up in the final font. Newly
created glyphs are set to export by default, unless their name
starts with an underscore (‘_’).

6.3.5	 Color Label
For easier sorting and filtering, or simply for keeping
oversight, you can mark glyphs with one of twelve predefined
colors. The colors have no effect on the exported font.
	 By holding down the Option key, you can set colors for the
currently displayed layers rather than for the whole glyphs.
In that case, the glyph-wide colors will be shown on the left
halves of the glyph cells, while the layer-specific colors occupy
the right halves of the cells.

	

6.3.6	 Unicode
The Unicode value is determined by the glyph name, which
means that you cannot set the value directly. Thus, the
displayed Unicode value of glyphs is read-only. However, if the
Use Custom Naming option is activated in File > Font Info > Other
Settings (Cmd-I), you can manually set the Unicode value of
any glyph.
	 Glyphs in the Private Use Area can always have custom
names. You first create them with a name according to the
uniXXXX (for values between U+0000 and U+FFFF) or uXXXXX
scheme (for values beyond U+10000) to set their Unicode
value, and then rename them to your liking. The usual glyph
naming restrictions still apply, though (see 6.6.2, ‘Naming
Glyphs’, p. 80). Make sure the custom name you choose is
not already reserved by another glyph in the internal glyph
database. Otherwise, the Unicode value of that specific entry
will be applied. In that case, you can override the glyph data
through Edit > Info for Selection (Cmd-Opt-I). For details, see
section 17.4.2, ‘Local Glyph Data Changes’ (p. 206).

From left to right:
orange glyph color (a); orange

glyph and pink layer color
(b); no glyph color and pink
layer color (c); neither glyph

nor layer color set (d).

� Glyphs Handbook, July 2016   72

6.3.7	 Note (List View)
A glyph can have an arbitrary string as note. Notes are only
accessible in List view. You can search for glyph notes in the
search field of the Font tab.

6.3.8	 Components (List View)
In List view, you can have Glyphs display the elements of
composite glyphs by right-clicking on the table header and
activating Components in the context menu. You can change
the composition of glyphs by changing their entries in that
column, e.g., from ‘A, macron’ to ‘A, macron.case’.

6.3.9	 Read-Only Properties in List View
The following properties can only be accessed in List view.
They are read-only and only useful for sorting glyphs:
 •  �ID corresponds to the glyph order in the font. You can

influence the order by setting the custom parameter
glyphOrder in File > Font Info > Font.

 •  �Character, i.e., the Unicode character as represented by
the OS X system font or a fallback font. Only glyphs that
have a Unicode value assigned can display something in
this column.

 •  �Script, e.g., ‘Latin’, ‘Greek’, ‘Cyrillic’, this is set through the
glyph name.

 • � Category and Subcategory, e.g., ‘Letter’, ‘Number’, and
‘Uppercase’, respectively. This is set through the glyph name.

 •  �Last Changed, i.e., date and time of the last manipulation of
the respective glyph.

6.4	 BATCH-PROCESSING

6.4.1	 Selecting Glyphs
Batch-processing a number of glyphs requires a selection of
multiple glyphs. You can select all glyphs currently displayed
in Font View via Edit > Select All (Cmd-A). Cancel the glyph
selection with Edit > Deselect All (Cmd-Opt-A). To select all
displayed glyphs except some of them, first select the ones you
want to exclude, and then choose Edit > Invert Selection (Cmd-
Opt-Shift-I).

� Glyphs Handbook, July 2016   73

6.4.2	 Menu Commands
You can apply manipulations on the active layers of a range of
selected glyphs. Select the glyphs you want to batch-edit, and
choose one of these commands:
 •  Glyph > Duplicate Glyph (Cmd-D)
 •  Glyph > Update Glyph Info
 •  Glyph > Make Component Glyph (Cmd-Opt-Shift-C)
 •  Glyph > Decompose Components (Cmd-Shift-D)
 •  Glyph > Add Image (see 6.7, ‘Images’, p. 82)
 • � Glyph > Update Metrics (Ctrl-Cmd-M) and Update Metrics for

All Masters (Ctrl-Opt-Cmd-M)
 •  Glyph > Set Anchors (Cmd-U) and Reset Anchors (Opt-Cmd-U)
 • � Paths > Selection to Background (Cmd-J), Add Selection

to Background (Cmd-Opt-J), Clear Background, Assign
Background , Swap with Background (Ctrl-Cmd-J)

 • � Paths > Correct Path Direction (Cmd-Shift-R) and Correct Path
Direction for All Masters (Cmd-Opt-Shift-R)

 •  Paths > Round Coordinates
 •  Paths > Tidy up Paths (Cmd-Opt-Shift-T)
 •  Paths > Add Extremes

6.4.3	 Batch-Renaming Glyphs
You can search and replace in names of selected glyphs with
Edit > Find > Find and Replace (Cmd-Shift-F). It will look for the
string entered in the Find field and replace it with the string
entered in Replace.
	 You can add characters to the end of the names of selected
glyphs if you leave the Find field empty and enter the desired
suffix in the Replace field:

	

� Glyphs Handbook, July 2016   74

The Regex option enables regular expressions in both text
entry fields. The text in the entry fields will be displayed in
red as long as the regular expression does not validate.

	

For instance, you can use a regular expression if you have
a number of glyphs with multiple dot suffixes, but want to
move ‘.alt’ to the end. Then you would enter ‘(\.alt)(\..*)’ in Find,
and ‘\2\1’ in Replace and press the Replace button. ‘\.’ stands
for a literal dot, ‘.*’ means any number of any characters; ‘\1’
represents the first set of parentheses, ‘\2’ the second one. For
more examples, see section 6.5.1, ‘Search Box’ (p. 74).

6.4.4	 Filters
All built-in, and most available third-party filters can be
applied to more than one selected glyph. For further details,
refer to their documentation.

6.4.5	 Palette Manipulations
From the Palette (Cmd-Shift-P), you can apply the
mirroring, scaling, rotating, and skewing functions in the
Transformations section on multiple selected glyphs. The
transformation origin will be respected.
	 Also, the boolean operations work with a multiple-
glyph selection. Be careful though, it is easy to achieve an
unexpected result.

6.5	 FILTERING AND SORTING

6.5.1	 Search Box
The search box (Cmd-F) at the bottom right provides a way to
instantly narrow down the selection of glyphs displayed in
the Font tab. By clicking on the search symbol (the magnifying
glass) in the entry field, you can choose the following options:
 • � All: search in glyph names, glyph notes, and Unicode values
 •  Name: search in names only

� Glyphs Handbook, July 2016   75

 •  Unicode: search in Unicode values only
 •  Note: search in glyph notes only
 •  Match Case: if active, searches will be case-sensitive
 •� � Regex: if active, the search string will be interpreted as

a regular expression
The Regex option not only activates regular expressions, but
also automatically limits the search to glyph names. Regular
expressions allow you to search for a text pattern rather than
a specific text. When activated, you can use search terms like
[Lldt]caron(\..+)* to match Lcaron, lcaron, dcaron, tcaron, with
or without dot suffixes. Some examples:
 •  [abc]  any of the letters a, b or c
 •  [^abc]  any letter but a, b or c: d, e, f, g …
 •  .  any character: a, b, c, ., -, 1, 2, 3 …
 •  \d  any digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9
 •  \.  a literal period: .
 •  a?  zero or one occurrence of a
 •  a+  one or more occurrence of a: a, aa, aaa, aaaa …
 •  a*  zero, one or more occurrences of a
 •  a{3}  exactly three occurrences of a: aaa
 •  a{2,5}  between 2 and 5 occurrences of a: aa, aaa, aaaa, aaaa
 •  a.*  any glyph name with a at the beginning: a, ae, aacute …
 •  .*a  any glyph name with a at the end: a, cedilla, ccedilla …
 •  .+-.+  any glyph name with a hyphen in it: beh-ar, he-hb …
 •  .+\..+  any glyph name with a period in it: a.ss01, J.titl …
 •  .+\d  any glyph name with a digit at the end: a.001, b.x2, c.ss02
 •  [^\d]*\d{3} � any glyph name with exactly three digits at the end,

and no digits anywhere before: a.001, x.test123 …

6.5.2	 Categories
Categories give you the option to only display a predefined
subset of the glyphs you have. Click the triangle next to the
category name to access subcategories. You can combine more
than one category by Cmd-clicking their names, e.g., if you
Cmd-click the categories Uppercase and Lowercase, Glyphs will
display both upper- and lowercase letters.
	 You can achieve an even narrower subset by also Cmd-
clicking a Filter. For instance, if you click the Uppercase
category and then Cmd-click MacRoman, Glyphs will display all
uppercase characters in the MacRoman encoding.

� Glyphs Handbook, July 2016   76

	 You can cancel any subset you created and return
to displaying the complete glyph set by clicking on the
All category.

6.5.3	 Languages
To only display glyphs belonging to a certain script, you can
click on the name of the script in the Languages, e.g., Latin,
Cyrillic, Greek etc. Clicking on the triangle next to the script
name will expand the view and give you more detailed
subsetting options. Again, you can combine subsets by
subsequently Cmd-clicking them.

6.5.4	 Smart Filters

	

To define a query-based filter, click the gear button in the
bottom left of the window and choose Add Smart Filter. Smart
filters are similar to smart playlists in iTunes. Set up the
query with any of these properties:
 • � Category and Subcategory: the categorization of the glyph

according to the glyph info in effect for the font.
 •  Color Label: the color assigned to the glyph, if any.
 •  Count of Paths: number of paths in the first master.
 •  Export Glyph: whether the glyph exports or not.
 • � First Master Has Components: whether the first master

contains components or not.
 •  Glyph Name: the name of the glyph.
 • � Has Annotations: whether the glyph has annotations,

placed with the Annotations Tool (A).
 • � Has Component: whether the first master contains a

component with a specific name.

� Glyphs Handbook, July 2016   77

 • � Has Custom Glyph Info: whether the glyph has custom glyph
info applied (via Edit > Info for Selection) that deviates from
the default glyph info database.

 • � Has Hints: whether any manually placed hints are on any of
the layers in the glyph.

 • � Has Metrics Keys: whether any of the glyph’s metrics
contains a formula such as ‘=n+10’.

 • � Has Special Layers: whether the glyph has a Bracket or
Brace layers.

 •  Has Unicode: whether the glyph has a Unicode value.
 •  Is Auto-Aligned: whether the glyph is automatically aligned.
 •  Master Compatible: whether masters can interpolate.
 • � Metrics Keys Out of Sync: whether the metrics keys for the

glyph are up to date or not.
 •  Script: e.g., Latin or Arabic according to the glyph info.
Add additional properties by clicking on the plus button at the
end of a line. By default, all properties are applied to the query
(logical-and). You can add and nest logical-and (‘all of the
following’), logical-or (‘any of the following’) and even logical-
not (‘none of the following’) concatenations by holding down
the Option key while pressing the plus button.

6.5.5	 List Filters
You can define a list of glyphs to be displayed by choosing Add
List Filter from the gear menu in the bottom left of the Font
tab. By default, currently selected glyphs are added to the list
automatically. You can subsequently edit the list or paste a list
of glyph names. In Font view, once you apply a list filter, you
will see its glyphs in the order they are listed in.

6.5.6	 Manage Filters
Once you have set up a couple of filters, you can apply more
than one filter by holding down the Command key and
subsequently clicking the individual Filter names.
	 Edit an existing filter by selecting it in the Font tab sidebar
and subsequently choosing Edit Filter from the gear menu in
the bottom left. Alternatively, double click its side bar entry.
A dialog sheet will appear that allows you to edit the selected
smart or list filter. Remove an existing filter by selecting
its sidebar entry and choosing Remove Filter from the same
gear menu.

� Glyphs Handbook, July 2016   78

	 You can sort your filters by dragging them into a desired
order. You can also organise your filters in sidebar folders. To
add a folder, choose Add Folder from the gear menu.
	 To quickly change the name of a filter or folder, click to
select it, press the Return key, and type a new name.

6.5.7	 Custom Parameter ‘glyphOrder’
Categories and Filters have no influence on the order of the
glyphs in the final font file. You can take control of the saving
order with the ‘glyphOrder’ custom parameter in File > Font
Info > Font (Cmd-I). The parameter takes a list of glyph names
as its value. If Glyphs finds this custom parameter, it will also
display the glyphs in Font view in that order. When importing
an existing OTF or TTF, Glyphs preserves the glyph order and
creates the custom parameter automatically if the preference
Keep Glyph Names from Imported Files is activated (see 2.1.2,
‘User Settings’, p. 12).

6.6	 NAMES AND UNICODE

6.6.1	 Glyph Info Database
Glyphs contains a glyph info database. For each glyph, the
database defines:
 •  the human-readable (or ‘nice’) glyph name,
 • � the production names, i.e., the name as required for the

exported installable font file,
 • � the associated Unicode value, if any,
 •  possible components,
 •  default anchors, if any,
 • � possible accents, mainly for displaying the mark cloud

when you click on an anchor,
 •  the script such as Latin, Cyrillic, Arabic, etc.,
 • � the category and subcategory, such as letter and uppercase,

punctuation, or figure, etc.
For the ‘nice names’, Glyphs employs a special naming
convention which is, for the most part, loosely based on the
Adobe Glyph List (AGL) Specification. But in the AGL, not
all glyphs have nice names. Rather, they have names like
‘uni042F’, which are hard to memorize. In cases like this,
Glyphs derives the nice name from the Unicode description
and appends a script suffix, e.g., ‘CYRILLIC CAPITAL LETTER
A’ becomes ‘A-cy’. The glyph info database is stored as an XML

For more information about the
Adobe Glyph List, see

github.com/adobe-
type-tools/agl-aglfn

https://github.com/adobe-type-tools/agl-aglfn
https://github.com/adobe-type-tools/agl-aglfn

� Glyphs Handbook, July 2016   79

file inside the application. You can extend or override the
internal database with a custom XML file in the Application
Support folder for Glyphs. For details, see section 17.4.1, ‘Global
Glyph Data Changes’ (p. 204) in the Appendix. After a restart,
Glyphs will respect the custom changes of your XML for all
files produced thereafter. For an overview of the available data
stored in the glyph info database, choose Window > Glyph Info:

	

You can override this default or custom glyph info locally,
i.e., for a single Glyphs file. Select a glyph, or a range of
glyphs, and choose Edit > Info for Selection. A dialog sheet will
appear, presenting option for manipulating the glyph info.
This is useful if you need to have different glyph options for
one project.

	

For more info on this, see section 17.4.2, ‘Local Glyph Data
Changes’ (p. 206) in the Appendix.
	 Typically, suffixed glyphs will inherit their glyph info
attributes from their unsuffixed counterpart. That means that,
e.g., both ‘X’ and ‘X.alt.bold’ will be treated as letters, thus

� Glyphs Handbook, July 2016   80

enable automatic alignment and receive default anchors when
Glyphs > Add Anchors is run. If you name the copy ‘Xalternate’
without the dot, it will not be recognized as a letter unless
you changed the glyph data accordingly. So, if you want to
handle glyph backups and copies in a way that Glyphs can
still semantically connect them with their originals, make
sure the glyph names are the same up until the first period in
the name.

6.6.2	 Naming Glyphs
The glyph name appears below the glyph in grid view, or in
a separate column in List view. You can edit a glyph name by
clicking once into the name. Glyphs will automatically convert
entries like ‘ä’ or ‘uni00E4’ to nice names, i.e., ‘adieresis’ in this
case. Based on the glyph names, Glyphs will automatically
assign Unicode values as well as Category, Subcategory and
Script attributes, and can even automatically build some
OpenType features.
	 When you name or rename a glyph, three different types of
input values are accepted:
 •  the ‘nice’ name, e.g., ‘Ia-cy’
 • � the Unicode value in hex form with a ‘uni’ or ‘u’ prefix,

e.g., ‘uni042F’ or ‘u10120’
 • � the Unicode character as typed with the keyboard, e.g., ‘Я’
This automation can be deactivated on a per-font basis:
Activate File > Font Info > Other Settings > Use Custom Naming.
If you do so, however, other automatic functions, like the
composition of compound glyphs or the generation of
OpenType features, will stop working.
	 For Unicode-value based glyph names, use the prefix ‘uni’
followed by the four-digit hexadecimal code, e.g., ‘uniE002’. For
Unicodes outside the Basic Multilingual Pane (BMP), use ‘u’ as
a prefix, followed by the five- or six-digit code, e.g., ‘u10015’.
	 Except for ‘.notdef’, a valid glyph name must begin with a
character from A-Z or a-z. A glyph name can subsequently also
contain figures (0-9), underscores (_), periods (.) or hyphens (-).
All other characters, including whitespace characters, are
not allowed. A dialog will appear if you try to use invalid
characters like space in a glyph name.
	 You can use preceding underscores for non-exporting
glyphs. When the name of a newly generated glyph starts
with an underscore, its Exports option will be off by default.

� Glyphs Handbook, July 2016   81

	 If you need variations of glyphs, extend your glyph
names with dot suffixes, like ‘n.sc’ for a small cap n, or
‘five.sups’ for a superscript five. Some suffixes will be used
by Glyphs to automatically build OpenType feature code.
See the appendix of this manual for a list of recognized
suffixes. Multiple suffixes should be added in the order of the
OpenType features, that is, if you want to take advantage of
the automatic feature generation. E.g., if you want to add a
stylistic alternate for a small cap c, then you call it ‘c.sc.ss01’,
since, by default, stylistic sets come after small caps.
	 Hyphens are used to indicate the script a glyph belongs to,
e.g., ‘alef-ar’ for an Arabic alef or ‘ta-hira’ for the ta syllable in
the Japanese Hiragana script.
	 To name ligatures, the names of the parts need to be joined
with an underscore, e.g., ‘f_f_l’ for an ffl ligature. The script
suffix is appended only once (e.g., ‘lam_alef-ar’). Variation
suffixes are only added once as well. These suffixes define the
role of the whole ligature. For instance, a ligature formed of
‘lam-ar.init’ and ‘alef-ar.medi’ is called ‘lam_alef-ar.init’.

	

You can copy the names of selected glyphs into the clipboard
by opening the submenu Copy Glyph Names in the context
menu. You can choose between four options:
 • � Space Separated: The names will be copied with simple

spaces between them, e.g., ‘a adieresis aacute b c’. This is
useful for building OpenType feature code.

 • � Comma Separated: Like above except, e.g., ‘a, adieresis,
aacute, b, c’. This is useful for building custom parameter
strings. It is also the most human-readable format, so
you may want to use this in written communication
with collaborators.

� Glyphs Handbook, July 2016   82

 • � Slashed: The names will be copied with forward slashes as
delimiters, e.g., ‘/a/adieresis/aacute/b/c’. This is useful for
building and exchanging sample strings, especially if you
need to include glyphs that have no Unicode values. When
pasted into an Edit tab, Glyphs will try to parse slash-
escaped glyph names.

 •  �Python List: A Python-style list of strings will be copied in
the clipboard, e.g., ‘["a", "adieresis", "aacute", "b", "c"]’, ready
for pasting into Python code.

6.6.3	 Renaming Glyphs
You can rename any glyph by simply clicking in its name
field and editing the name as desired. Keep in mind that if
you change the name before the first period, its glyph info
attribution will be changed as well. This means that Unicode
value, category and subcategory, script, associated default
anchors and accents, as well as the default decomposition
may change.
	 For searching and replacing in glyph names, or batch-
renaming a large number of glyphs at once, see section 6.4.3,
‘Batch-Renaming Glyphs’ (p. 73).

6.6.4	 CID Mapping
CJK fonts make use of CID mapping, where glyphs are accessed
not by their glyph name, but through a unique character
identifier (CID). Glyphs supplies mapping files for its ‘nice’
glyph names to CIDs. A ROS determines which glyphs receive
which CID. Glyphs that are present in the font and set to
export, but not included in the ROS, are added to the end of
the CID mapping at export. For more information about how
to choose a ROS, see its entry in the list of custom parameters
in the Appendix (p. 195).

6.7	 IMAGES

6.7.1	 Adding and Managing Images
Similar to Edit view, you can add an image to the current
glyph layer by dragging it onto a glyph cell. Batch-add images
by choosing Glyph > Add Image  and then selecting any number
of images. Glyphs will place them in the appropriate cells
based on their file name. E.g., an image called ntilde.png will
be put in ntilde, iacute.pdf in iacute.

� Glyphs Handbook, July 2016   83

6.7.2	 Viewing Images
Like in Edit view, image display in Font view respects the
View > Show Image setting unless there is no path drawn in the
currently active layer of the glyph. In that case, the image will
be shown regardless of the Show Image setting.
	 For more details on what you can do with images, see
section 3.11, ‘Images’ (p. 44).

� Glyphs Handbook, July 2016   84

7	 Font Info
Open the Font Info window by choosing File > Font Info (Cmd-I),
or by clicking on the Info button in the top left corner of the
main window.

7.1	 FONT
The Font tab contains information that applies to the whole
font family.

7.1.1	 Family Name
The name of the font family as it will appear in a font menu.
Fonts carrying the same family name will be grouped in the
same Style submenu. You can use a space in the font name,
but non-ASCII characters may prevent the font from exporting.
If you need special characters in your family name, consider
the custom parameter Localized Family Name.
	 Glyphs uses the Family Name entry to derive the file name,
and the entries for OpenType Name IDs 1, 3, 4, and 6. In CFF-
based OpenType fonts, the entry is also used for FontName
and FullName in the CFF table. The entry can be overridden by
the familyName parameter in an instance.

7.1.2	 Units per Em
Number of units per em square (UPM), 1000 is the default.
Increasing the UPM value can improve the representation
of subtle details. The OpenType specification allows values
between 16 and 16,384, but values greater than 5000 can
lead to problems in InDesign and Illustrator. Problems have
been reported for other applications starting at 3000 UPM.
Some applications expect a UPM value of 1000 for CFF fonts.
Also, point coordinate values must not exceed ± 32,768,
and glyph widths of CFF fonts can be problematic beyond
± 4096. Thus, if you need higher precision, it may be better
to adapt the Grid Spacing and Subdivision values in File >
Font Info > Other Settings. See section 7.5.1, ‘Grid Spacing and
Subdivision’ (p. 96), for more details.
	 Click on the double arrow next to the text field to scale the
entire font. If you want to enlarge the font, set the UPM to
something smaller than 1000, then scale back to 1000. Start
with a higher value than 1000 to scale down. The quotient of
these two values determines the scale factor.

Name IDs refer to the entries
of the OpenType Naming Table

stored in OTF and TTF fonts. For
a complete specification, see:

www.microsoft.com/
typography/otspec/name.htm

Tip: to avoid early rounding
errors, it may be a better

idea to use the Scale to UPM
parameter in an instance.

http://www.microsoft.com/typography/otspec/name.htm
http://www.microsoft.com/typography/otspec/name.htm

� Glyphs Handbook, July 2016   85

7.1.3	 Designer and Designer URL
Here, you can enter your name and a URL (including the
protocol, e.g., http:// or ftp://), for example:
 •  Designer: Jessica Doe
 •  Designer URL: http://www.example.com/
The entries correspond to OpenType Name IDs 9 and 12. You
can check if the URL was entered correctly by clicking on the
arrow next to the text entry field. Glyphs will open the URL in
your web browser.

7.1.4	 Manufacturer and Manufacturer URL
Here, you can enter name and URL (including the protocol,
e.g., http:// or ftp://) of your font vendor, for example:
 •  Manufacturer: Sample Font Store
 •  Manufacturer URL: http://www.example.com/
The entries correspond to OpenType Name IDs 8 and 11. You
can check if the URL was entered correctly by clicking on the
arrow next to the text entry field. The URL will then be opened
in your web browser.

7.1.5	 Copyright
A simple copyright notice. Click the circled arrow next to it to
have Glyphs fill it in automatically, based on the entry in the
Designer field. This will be recorded as Name ID 0.

7.1.6	 Version
Glyphs derives the Version String (Name ID 5) from the
Version entry. In the resulting font file, tools like makeotf and
ttfautohint also leave their traces in the version string., e.g.,
‘Version 1.010;PS 001.010;hotconv 1.0.70;makeotf.lib2.5.58329’.
If you are not happy with this additional text, and therefore
want to override the creation of the version string, then
consider using the custom parameter versionString in File >
Font Info > Font. See its entry in the list of custom parameters
in the Appendix (p. 201) for more details.
	 This additional information, however, may be helpful
for renderers. There is a recorded case of an old version of
makeotf creating a faulty glyph substitution table. Based on
the extra data stored in the version string, InDesign recognizes
those fonts, and reacts accordingly. Consider this before you
remove the makeotf version info.

� Glyphs Handbook, July 2016   86

7.1.7	 Date
The creation date of the font. This entry will set the Creation
and Modification dates in the OpenType Font Header table,
also known as head table.

7.1.8	 Custom Parameters
Use entries in the Custom Parameters field to specify more
settings. To add a parameter, click on the plus symbol, select
or type a Property, and enter a Value. Depending on the entry,
you either type it directly into the field, or in a dialog that
appears after clicking or tabbing into the field. You can also
copy and paste parameters. You can use font-level custom
parameters to override default values set by Glyphs, but they
are themselves overridden by master and instance parameters.
	 Available parameters are displayed in the drop-down list
that appears when you click on a Property. See section 17.3,
‘Custom Parameters’ (p. 180) for a detailed description of
each parameter.

7.2	 MASTERS
While information about the designed masters (the input)
is set under Masters, the Instances tab contains information
about each font instance that will be generated (the output)
when you run File > Export (Cmd-E). Clicking the plus button in
the bottom left reveals a drop-down list with three options:
 •  �Add Master adds a new, empty master with default values to

the setup, i.e., Weight 100, Width 100, Custom 0. All glyphs
will receive a new, empty master layer.

 • � Add Other Font asks you for a master in a file currently open
in Glyphs; once you confirm the dialog, the chosen font
master will be inserted in the front-most file. All glyphs
will receive a new master layer containing whatever was in
the corresponding glyph of the imported master, or empty
if the glyph does not exist in the imported font master.

 •  �Duplicate Selected creates an exact duplicate of the currently
selected master in the same file. All glyphs will receive a
new master layer with the same contents as the source
master layer, including kerning.

Once you have several masters set up in the Masters tab, you
can reorder them by dragging and dropping. The first master
has special relevance for glyph-level hinting information.
See section 10.4, ‘Manual hinting’ (p. 126) and section 11.3,

For more details about the head
table, see: www.microsoft.com/

typography/otspec/head.htm

For a step-by-step guide
through setting up masters,

see glyphsapp.com/tutorials/
multiple-masters-part-

1-setting-up-masters

Tip: A quicker way to
duplicate a font master is

to Opt-drag its entry in the
sidebar to a new position.

http://www.microsoft.com/typography/otspec/head.htm
http://www.microsoft.com/typography/otspec/head.htm
https://glyphsapp.com/tutorials/multiple-masters-part-1-setting-up-masters
https://glyphsapp.com/tutorials/multiple-masters-part-1-setting-up-masters
https://glyphsapp.com/tutorials/multiple-masters-part-1-setting-up-masters

� Glyphs Handbook, July 2016   87

‘Manual Instructions’ (p. 133) for further details. Also, some
smart filters only check for data in the first master. For more
details, see section 6.5.4, ‘Smart Filters’ (p. 76). All values will
be interpolated if entered in the same order throughout all
masters. You can edit several masters at once after you Shift-
click or Cmd-click the master names in the list on the left.

7.2.1	 Proportions: Weight, Width, and Custom
The Weight and Width pop-ups and the Custom text field affect
only the toolbar icons and the naming of the master layers
in the Layers palette in the Palette sidebar (Cmd-Opt-P). The
style name of the final font and its interpolation are set in
the Instances tab. The number value fields are important for
interpolation. If you want the masters to export as they are,
i.e., without any interpolating, the instances must carry the
same interpolation values. For more information about this,
see section 12.2, ‘Setting up Masters’ (p. 142).

	

7.2.2	 Metrics
Here, you can enter the values for the vertical metrics of your
type design:
 • � Ascender: the height of tall lowercase letters such as b, d, f,

h, k, l or þ.
 • � Cap Height: the height of the capital letters, not counting the

overshoot.
 • � x-Height: the height of the small lowercase letters, i.e.,

without ascenders, not counting the overshoot.
 • � Descender: the depth of descenders of lowercase letters that

reach below the baseline, e.g., g, j, p, or q.
These measurements serve as master-wide guidelines in Edit
view when View > Show Metrics is active. When determining
these values, ignore the overshoot in your design. So, for
instance, if you have the choice between various values for

� Glyphs Handbook, July 2016   88

the x-height, say 490, 496 and 502, you want the one closest to
your baseline, i.e., 490.
	 The vertical metrics Ascender and Descender have an
impact on the line height as displayed in the Edit view. You
can override the calculation and specify your own line height
with the EditView Line Height parameter, either in the Font or
Masters tab.
	 Glyphs will calculate the vertical metrics in the OS/2
and hhea tables from these values. If you keep Ascender
and Descender the same in all masters, the phenomenon of
‘line height jumping’ will be reduced to a minimum when
switching between fonts in most applications.
	 If the smallCapHeight custom parameter is set, Glyphs
will prefer its value to the x-Height value for the metric line
when small cap letters are displayed. The same goes for Indic,
Hebrew, and Arabic letters if the shoulderHeight parameter
is set. Also, Glyphs is able to find alignment zones (see 7.2.4,
‘Alignment Zones’, p. 89) automatically if you first enter all
vertical metrics correctly.
	 The Italic Angle has an effect on a number of items
throughout the application. Functions that respect the slant
angle include aligning anchors between two selected nodes,
the display of the x offset in measurement mode, and the
calculation of the sidebearings.

	

7.2.3	 Stems
If you enter good values for your standard stems, the
autohinter will find those stems in your letters and put
a stem hint on them. In a Multiple Masters setup, make
sure the stems are listed in the same order in all masters,
otherwise they cannot be interpolated correctly. For a detailed
discussion, see chapter 10, ‘PostScript Hinting’ (p. 121).

� Glyphs Handbook, July 2016   89

7.2.4	 Alignment Zones
Alignment zones help create an even vertical alignment at low
resolutions through overshoot suppression. The values entered
here are crucial for the autohinting process when the font is
being exported. An alignment zone must encompass anything
that should later be aligned at a low resolution. For a detailed
discussion, see chapter 10, ‘PostScript Hinting’ (p. 121).
	 After you have set the Metrics properly, you can click the
gray circle to let Glyphs find the alignment zones for you.
Glyphs will then reduplicate the heights of the vertical metrics
you entered in the Metrics field as the positions of the zones.
It also respects the smallCapHeight and shoulderHeight custom
parameters if present. And it will try to guess the size of the
alignment zones by measuring certain key glyphs in the font:
 • � for the ascender zone, it will take the height of the

lowercase f plus one unit,
 • � for the cap zone, the height of the uppercase O plus one

unit,
 • � for the small cap zone, the height of ‘o.sc’ plus one unit,
 • � for the x-height zone, it will measure the lowercase o, and

add one unit,
 • � the baseline zone defaults to −15,
 • � and for the descender zone, Glyphs takes the depth of the

lowercase g plus one unit.
If Glyphs cannot find any glyphs to measure, the sizes for top
zones default to 16, and to −16 for bottom zones. It is a good
idea to double check if all your important glyphs reach into,
but not beyond, the alignment zones.

	

7.2.5	 Custom Parameters
Click on the plus button to add custom parameters for
the masters. You can also copy and paste parameters.
Values are interpolated if defined in all masters. Master
parameters override all font-wide settings and parameters,

� Glyphs Handbook, July 2016   90

but are themselves overridden by instance-level settings
and parameters.
	 See section 17.3, ‘Custom Parameters’ (p. 180), for possible
values and a detailed description of custom parameters.

7.3	 INSTANCES
Instances are the actual fonts being created when you choose
File > Export (Cmd-E). To add a new instance, click on the plus
button in the lower left corner of the window, and pick an
option from the menu that appears:
 • � Add Instance inserts a new instance called ‘Regular’ with the

default values Weight 100, Width 100, and Custom 0.
 •  �Add Instance for Each Master adds instances at the same

design space coordinates as the masters set up in File > Font
Info > Masters. The respective style names are then derived
from the master names.

Select one or more instances and click the minus button to
delete them. You can edit several instances at once if you
Shift-click or Cmd-click the instance names in the list on
the left. Rearrange instances by dragging them into a new
position. The order has no significance
	 For more information on interpolation, see section 12.3,
‘Setting up Instances’ (p. 143).

7.3.1	 Is Active
The is active setting controls whether this particular instance
actually exports when you choose File > Export (Cmd-E).
Deactivated instances will be displayed in gray in the sidebar,
and are ignored at export.

7.3.2	 Style Name
This is the style name as it will appear in the font menu of an
application, e.g., ‘Bold Condensed’ or ‘Light Italic’. You can use a
space in the style name, but non-ASCII characters may prevent
the font from exporting. If you do need special characters
in your style name, consider the localizedStyleName custom
parameter. For more details, see its entry in the list of custom
parameters in the Appendix (p. 189).
	 Also, keep the style name short. Some environments
have difficulties with long font names. Microsoft Windows
can declare a font invalid if the overall name (family and
style name) exceeds a limit of 20 letters. In that case,

� Glyphs Handbook, July 2016   91

consider using a shortened style name and the parameters
preferredFamilyName and preferredSubfamilyName. For more
details, see their entry in the list of custom parameters in the
Appendix (p. 193).

	

7.3.3	 Weight and Width
With the Weight and Width drop-down lists, you set the values
weight class and width class, displayed on the right next to
them. These numbers can be used by an application to sort the
fonts in a logical order, to facilitate the choice of fonts within a
family, or for referencing font files in CSS files.

	

Some Weight menu settings yield the same weight class
number. E.g., Thin, ExtraLight and UltraLight all cause
the weight class to be set to 250. In cases like this, if you
need to differentiate further, you can override the value
calculation with the weightClass parameter. For further
details, see its entry in the list of custom parameters in the
Appendix (p. 202).
	 In Microsoft applications, values below 250 may lead to
artificial boldening of the font. Many web browsers will only
take the first digit of the weight class into account. Both
weight and width class affect the order of fonts in the font
menu in Adobe applications. Sorting occurs first by width,
then by weight, e.g.:
 •  Condensed Light, Condensed Regular, Condensed Bold
 •  Light, Regular, Bold (normal width)
 •  Extended Light, Extended Regular, Extended Bold

� Glyphs Handbook, July 2016   92

7.3.4	 Style Linking
Here, you can link the instance to the another instance of the
same family (all fonts carrying the same family name), and
define it as the other instance’s Bold, Italic, or Bold Italic. An
application may allow the user to switch between the linked
fonts through the means of Bold and Italic buttons, keyboard
shortcuts, or menu items.
	 To link one font to another, type the exact style name of
the other font in the text field, and click one or both of the
Bold and Italic check boxes.

	

Adobe applications will display all fonts of the same family
(i.e., with the same family name), in the style menu, and will
allow the user to switch between italic-linked fonts with Cmd-
Shift-I, and bold-linked fonts with Cmd-Shift-B.
	 Mac applications such as TextEdit can switch to linked Bold
and Italic styles via Format > Font > Bold (Cmd-B), or Format >
Font > Italic (Cmd-I), respectively.
	 Microsoft Windows applications support only the basic four
styles per font family, i.e., Regular, Italic, Bold, and Bold Italic.
They are accessed via the ‘B’ and ‘I’ buttons in the toolbar of
the Windows application, or the Ctrl-B and Ctrl-I keyboard
shortcuts. If a font family is not style-linked at all, then each
style will appear as an individual entry in the font menu. In
that case, clicking the ‘B’ or ‘I’ buttons may create a synthetic
Bold or Italic. Based on these conditions, we recommend the
following style-linking strategy:
 • � The Bold, Italic, and Bold Italic styles of your font family

should always be linked to the Regular. Within a given
width class of a given font family, use the Bold linking only
in this set of four fonts. E.g., ‘Italic is the Italic of Regular,
Bold is the Bold of Regular, Bold Italic is the Bold and Italic
of Regular’.

 • � Other italic styles should always be linked to their upright
(non-italic) counterparts, e.g., ‘Medium Italic is the Italic
of Medium’.

Some designers link the Semibold to the Light. If you choose
to do so, only the Light will appear in the font menu of some
applications, especially Microsoft Windows applications.

� Glyphs Handbook, July 2016   93

Therefore, users may be unaware that there is a Semibold, or
that they can access the Semibold by selecting the Light in
the menu and subsequently activating the Bold style. If you
still do want to link Semibold to Light, enter the name of your
Light style in the Style Linking text field of your Semibold
instance settings, and check the Bold option next to it.

7.3.5	 Interpolation
The Weight, Width, and Custom settings apply to the design
space spanned between the Masters. For further details, see
chapter 12, ‘Multiple Masters’ (p. 141).

7.3.6	 Custom Parameters
With instance-level parameters, you can produce different
versions of the same font carrying different copyright notices,
UPM values, family names, etc. Instance parameters override
all master and font settings and parameters.
	 See section 17.3, ‘Custom Parameters’ (p. 180), for a detailed
description of custom parameters.

7.3.7	 Instance Preview
At the bottom, you will see an interpolated preview of the
string ‘Aang126’. If you want different glyphs in your preview,
you can add an Instance Preview parameter with a list of glyph
names that should be displayed instead.

7.4	 FEATURES

7.4.1	 OpenType Feature Code
OpenType feature code entered in File > Font Info > Features
applies to the whole font. That is why all GPOS features that
are calculated specifically for each instance, such as the ‘kern’
feature, are not displayed here.
	 You can add OpenType classes, OpenType features, and
so-called prefixes to the code. Classes are named collections
of whitespace-separated glyph names, features are the actual
feature code in AFDKO syntax.	The prefix is for all information
that needs to stand outside an actual feature, e.g., lookup
definitions you want to re-use further down in the code. The
automatic feature generator will, by default, put the code for
required language systems into the prefix.

� Glyphs Handbook, July 2016   94

7.4.2	 Automatic Feature Code
Glyphs can automatically generate the code for many common
OpenType features. Click Update in the bottom left window
corner to initiate the automatic generation and ordering
of OpenType features. The built-in feature generator relies
on a naming convention and glyph name suffixes. E.g., all
letters with names ending in ‘.sc’ will be put in the small caps
features smcp and c2sc. In most cases, adding the feature tag
as glyph name suffix, will trigger the automatic generation of
that feature, e.g., x.ss01 will trigger the automatic generation
of the Stylistic Set 1 feature. Find a list of recognized suffixes
in section 17.1, ‘Automatic Feature Generation’ (p. 175).
	 Some features and classes can be generated automatically,
but need to be inserted manually. To do this, click on the
plus button, and choose All, AllLetters, or Capital Spacing from
the menu that pops up. The class All contains all glyphs,
AllLetters contains all glyphs categorized as ‘Letter’. Adding
the feature Capital Spacing (cpsp) adds extra space between
capital letters in all-caps typesetting. It will also trigger the
Uppercase class, containing all glyphs of category ‘Letter’,
subcategory ‘Uppercase’.
	 The deprecated Mathematical Greek (mgrk) feature can be
automated, but does not show up in the drop-down list of the
plus button. In this case, you would add a feature by clicking
on the plus button and choosing Feature from the drop-down
list, rename the newly created entry ‘xxxx’ to ‘mgrk’, and
activate its Generate Feature Automatically checkbox.

7.4.3	 Manual Feature Code
To write features, prefixes, and classes manually, uncheck the
Generate Feature Automatically checkbox, or create a new item
by clicking the plus button at the bottom left. Edit the name
of the feature, prefix, or class directly in the list on the left,
insert feature code in the top right pane. For the feature code
itself, Glyphs makes use of Adobe FDK syntax. You can test-
run your features with the Compile button.
	 All features and classes will be added to the feature file
with their respective names, as added in the left sidebar. The
only exception is ‘kern’, which is added as a lookup inside
the kern feature. See section 9.2.8, ‘Optional ‘kern’ Feature
Lookup’ (p. 120), for more details.

The Adobe FDK feature file
syntax is described in detail at:

www.adobe.com/devnet/
opentype/afdko/topic_

feature_file_syntax.html.

http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

� Glyphs Handbook, July 2016   95

	 While writing feature code, Glyphs will apply syntax
highlighting. You can autocomplete AFDKO feature code
keywords such as substitute, ignore or lookup by pressing
the Esc or F5 key. If multiple completions are possible, a little
menu will pop up under the word in question. Choose the
completion with the up and down arrow keys, and confirm by
pressing the Return key.
	 To remove features, prefixes or classes again, select one or
more entries in the sidebar, and click the minus button at the
bottom or press the Delete key. If you do not want the feature
to export into the OpenType font, but still keep it, you can
disable it. To do so, select a feature, prefix, or class, and click
the Disabled checkbox at the top of the window.
	 The bottom right area is for notes. In Stylistic Set features
(ss01 through ss20), you can use it to set the name of the
Set. Type ‘Name:’, followed by the intended description.
Alternatively, you can enter the complete featureNames
lookup as described in the Adobe FDK syntax:
  featureNames {
   name <platformID> <scriptID> <languageID> "featurename";
  };
A featureNames block may contain several name entries, for
different platforms, scripts, and languages. You can leave out
languageID, scriptID, and platformID, in this order, if they are
the same as the default platform 3 (Microsoft), script 1 (Latin),
language 0x409 (American English). Keep in mind that as of
this writing, Stylistic Set names are only supported by the
applications making use of the Cocoa text engine in OS X 10.11
El Capitan or later.

	

Platform, Script and Language
IDs are explained in Adobe’s
name table documentation:
partners.adobe.com/public/

developer/opentype/
index_name.html

http://partners.adobe.com/public/developer/opentype/index_name.html
http://partners.adobe.com/public/developer/opentype/index_name.html
http://partners.adobe.com/public/developer/opentype/index_name.html

� Glyphs Handbook, July 2016   96

On a per-instance basis, specific OpenType features can be
disabled with the Remove Features custom parameter. Or,
OpenType features can be changed with the Replace Feature
parameter. For more details, see the respective entry in the list
of custom parameters in the Appendix (p. 195).

7.5	 OTHER SETTINGS

7.5.1	 Grid Spacing and Subdivision
The Grid Spacing value defines how coordinates get rounded.
Standard is the value 1. When set to zero, no rounding will
happen. This is useful if you want to keep very fine details,
e.g., after applying the Hatch Outlines filter or in detailed
dingbat fonts, or if you plan to scale your glyphs and want to
minimize rounding errors. Higher values are helpful when
creating a pixel font.
	 All tools and all modifications will consequently snap to the
grid. Regardless of the grid settings, you can round all point
coordinates of selected nodes or glyphs to integer numbers by
choosing Paths > Round Coordinates.
	 The Subdivision value gives you the option to subdivide the
Grid Spacing if you need finer steps but want the larger grid
spacing as design orientation. The value indicates into how
many compartments the main grid is subdivided, e.g., a Grid
Spacing value of 100 and a Subdivision value of 5 will yield
a subgrid with a 20 units step. Setting Grid Spacing to 1 and
Subdivision to 10 will give your point coordinates one decimal.

7.5.2	 Use Custom Naming
This option prevents the automatic replacement of glyph
names with names as suggested in the built-in glyph
database. This may be of importance where special workflow
requirements apply. The option is set in all fonts imported
from OTF files, and UFOs that are opened with Glyphs for the
first time, if the Keep glyph names from imported files option
is set in Glyphs > Preferences > User Settings (see 2.1.2, ‘User
Settings’, p. 12).
	 Deactivating the Custom Naming option does not
immediately activate the automatic replacement of names.
To trigger the renaming, select all glyphs in Font view, and
use Glyph > Update Glyph Info. Attention: This may invalidate
imported or manually written feature code.

Contrary to popular belief,
decimal coordinates can be

exported into PS-based OTFs.

� Glyphs Handbook, July 2016   97

	 Only when the Custom Naming option is activated, can
you set your own Unicode values. Otherwise, Glyphs will
derive them from your glyph names. See section 6.3.6,
‘Unicode’ (p. 71) for more details.

7.5.3	 Disable Automatic Alignment
This option disables the automatic alignment of components
and the autosync of metrics for component-based diacritics.
If you want to prevent accidental shifts of components in
this case, you can lock them via the context menu. Newly
imported files will have automatic alignment disabled if the
corresponding option in the app preferences is set accordingly
(see 2.1.2, ‘User Settings’, p. 12).

7.5.4	 Keep Alternates Next to Base Glyph
In Font view, glyph variations with name suffixes will stay
next to the main glyph if this option is enabled. For example,
h.ss16, h.alt, h.loclENG will be displayed right after h instead
of being moved to the end of the category.

7.6	 NOTES

7.6.1	 Font Note
Text stored in the font note is only available inside the Glyphs
file and does not export into the OpenType font. The content
of the text field is equivalent to the value of the font custom
parameter note, see its entry in the list of custom parameters
in the Appendix (p. 190).
	 The text entry sports Markdown-aware highlighting for
bold, italic, hyperlink, code and title formatting.

	

� Glyphs Handbook, July 2016   98

8	 Reusing Shapes
8.1	 COMPONENTS

Displayed as a gray glyph inside another glyph, components are
an efficient way to re-use the shapes of glyphs inside multiple
other glyphs. The main purpose of components is their use
inside diacritic variations of the base letter, e.g., A in Ä, Ă, Ā, Á,
À, Â, and Å.
	 The original, usually outlined, glyph that the component
points back to, is referred to as the ‘base glyph’ of that
component. A glyph built with components is usually referred
to as ‘compound’ or ‘composite glyph’. Since the component
always stays in sync with its base glyph, you only need to
change the original outline, and the changes will be visible in
all composites.
	 Components are converted into plain outlines before
exported in OpenType/CFF fonts, since CFF does not properly
support components. However, in TrueType-based fonts,
components are kept, unless they overlap each other and the
custom parameter Keep Overlapping Components is not set. For
more details, see its entry in the list of custom parameters in
the Appendix (p. 188).

8.1.1	 Building Compounds
You can build compound glyphs by either creating a glyph
with the proper name, e.g., ‘aacute’, or by selecting existing
glyphs and choosing Glyph > Make Component Glyph (Cmd-
Opt-Shift-C) to rebuild the glyph as a composite with its
default recipe. Glyphs will use a built-in database of glyph
compositions to determine the components of the glyph in
question. You can add components yourself to an existing
glyph by choosing Glyph > Add Component  (Cmd-Shift-C) and
picking the base glyph in the subsequent dialog.
	 If you already have a letter that you want to turn into a
component-based glyph, you can force the composition with
Glyph > Make Component Glyph. The content of the letter will
be deleted and rebuilt from scratch, then. This only works if
the base glyphs of the individual components already exist in
the font.

While multiple glyphs are
selected, you can add the

same component to all
those glyphs at once, using
the same menu command.

� Glyphs Handbook, July 2016   99

8.1.2	 Turning Paths into Components
If the base glyphs are not already present in the font, you can
create a new component from an existing path by selecting the
path you want to turn into a component and choosing Glyph >
Component from Selection or picking Component from Selection
from the context menu. Glyphs will then suggest a name for
the base glyph based on the decomposition information from
the built-in glyph database:

	

Once you confirm the dialog, Glyphs will create a new glyph
containing the selected path and place it as a component in
the original glyph. In multiple-master setups, it will look
for corresponding paths in all master layers, assuming that
master layers have a compatible path order. This mechanism
can be useful for deriving dotaccentcomb and idotless from i,
for instance.

8.1.3	 Recipes
When creating new compound glyphs, you can use
composition recipes and force a non-standard composition. For
this, you need to bring up the Glyph > Generate Glyphs  dialog.
There, you can build recipes in three ways:
 •  A=a	 base → composite copy
 •  x+dieresiscomb=xdieresis	 base + mark → mark compound
 •  s.sc+s.sc=germandbls.sc	 base + base → compound ligature
In the first example, the ‘composite copy’, Glyphs will create a
lowercase glyph called ‘a’ with an uppercase ‘A’ placed in it as
a component. In the second example, the ‘mark compound’, a
glyph called ‘xdieresis’ will be generated with the letter ‘x’ as
the base, combined with the mark ‘dieresiscomb’. In the last
example, the compound ligature recipe, Glyphs will create a
glyph called ‘germandbls.sc’ with two letter components ‘s.sc’
next to each other.

� Glyphs Handbook, July 2016   100

8.1.4	 Editing Components
Select a component by clicking on it. Press the Tab key to
select the next, or Shift-Tab to select the previous component.
Rectangular mouse selections ignore components, unless you
simultaneously hold down the Option key.
	 The gray Info box will display component information:
the name of the original glyph the component points to,
its position, scale, and rotation. Open the original glyph by
either double clicking the component or clicking on the arrow
next to the glyph name. Change the component by clicking
on its name. Glyphs will prompt you for the new glyph the
component should point to.

You can edit component attributes by changing the values in
the gray Info box, or by applying transformations from the
Transformations Palette, such as aligning, scaling, rotating, and
mirroring. Flipping mark components both horizontally and
vertically will switch their top and bottom anchor association.
I.e., a flipped top mark will attach to a bottom anchor and
vice versa. This can, for example, be useful for reusing the
bottom mark commaccentcomb in gcommaaccent (i.e., instead
of using the default commaabovecomb), where the comma
accent is supposed to reside on top of the g.
	 You can move a selected component with the mouse or
the arrow keys if it is not automatically aligned. Hold down
the Shift key for increments of 10, and the Command key for
increments of 100. Option-drag a component to duplicate it.
Delete it by simply pressing the Delete or Backspace key.

8.1.5	 Moving between Base Glyphs and Compounds
To edit the base glyph of a component, double click the
component and Glyphs will place the original letter next to
the compound glyph, and activate it for immediate editing.
Alternatively, you can select the component inside the
composite glyph and click the arrow symbol that appears in
the gray Info box (Cmd-Shift-I).
	 Placeholders can indicate an ‘empty base glyph’, ‘no base
glyph’, or a ‘bad reference’. An empty base glyph is a base glyph
without paths or components. Double clicking its placeholder

� Glyphs Handbook, July 2016   101

will open the empty glyph next to the current glyph, so you
can edit it right away. ‘No base glyph’ means that the glyph the
component is referring to does not exist in the font. Double
click the placeholder to create the glyph, and insert it in the
Edit tab, next to the current glyph. A ‘bad reference’ indicates
a broken component reference, e.g., a circular reference, i.e.,
a component that points to the compound glyph in which
it resides.

	

You can see in which compounds a glyph is used as a
component by right-clicking or Ctrl-clicking on the glyph
in Edit view to open its context menu, and choosing Show
all glyphs that use this glyph as a component. All glyphs that
contain a component pointing back to this glyph will be
inserted next to it in the Edit tab. This command is also
available in the context menu of placed components. All other
compounds containing the same component will be inserted
next to the current glyph.

8.1.6	 Anchors
In mark compounds, accents are snapped into place if
corresponding anchors are placed in both the base letter and
the original mark. The letter needs an anchor (e.g., ‘top’), and
the mark needs a corresponding mark anchor, i.e., an anchor
with the same name, but preceded by a leading underscore
(e.g., ‘_top’). In the composite, the mark will then be positioned
according to the relative anchor positions.
	 For many glyphs, default anchors are predefined in the
built-in glyph database. They can be added to selected glyphs
with Glyph > Set Anchors (Cmd-U). If you additionally hold
down the Option key, the command changes to Reset Anchors
(Opt-Cmd-U), then Glyphs will delete all present anchors and
reset the default anchors. Setting and resetting anchors also
works for multiple glyphs. For the automatic positioning of
anchors, the italic angle of the master is respected.
	 You can add custom anchors by choosing Add Anchor from
the context menu. You will immediately be prompted for a

Tip: Edit > Select All (Cmd-A)
selects all paths, but ignores

anchors and components.
Selecting all twice in a row
(hold down Cmd while you

type A twice) also selects
anchors and components.

� Glyphs Handbook, July 2016   102

name. Enter a name and confirm by pressing Return. You can
change the name of an existing anchor either by selecting it
and pressing Return, or by double clicking it. Then, you can
start typing the new name:

	
new anchor

Select an anchor in the base glyph to get a preview of the most
common accents that may attach to this glyph. Similarly,
select an anchor in the mark glyph and this accent is shown
on all other glyphs in the same Edit view. If exactly one
anchor is selected, press the Tab key to select the next anchor,
or Shift-Tab to go to the previous anchor.
	 Change the position of an anchor by dragging it with the
mouse, or selecting it and pressing the arrow keys. Add Shift
or Command for increments of 10 or 100 units, respectively.
Delete selected anchors by pressing the Delete key. Select an
anchor and two points and choose Paths > Align Selection (Cmd-
Shift-A) to horizontally center the anchor between the points.
Again, Glyphs will respect the italic angle set in File > Font
Info > Masters (Cmd-I).
	 Sometimes you need more than one ‘top’ anchor, e.g., in
ligatures, or for fine-tuning positions of certain marks, or in
circumflexcomb for different positions where marks can attach
in Vietnamese double accents. Multiple anchors of the same
kind need to be underscore-suffixed, e.g., ‘top_1’ and ‘top_2’, or
something more descriptive such as ‘top_viet’ or ‘top_acute’.
If you apply this naming scheme, you can choose a different
anchor for a component by selecting it, clicking on the anchor
symbol in the Info Box, and choosing an alternative anchor
from the pop-up menu. The anchor symbol becomes visible
if there is more than one anchor that fits the currently
selected component:

� Glyphs Handbook, July 2016   103

To change the default anchors, or which marks are displayed
in the mark cloud, see section 17.4.1, ‘Global Glyph Data
Changes’ (p. 204) in the Appendix.

8.1.7	 Automatic Alignment
Letters built entirely from components, so-called compound
or composite glyphs, can make use of automatic alignment,
given that the option File > Font Info > Other Settings > Disable
Automatic Alignment is off (see 7.5.3, ‘Disable Automatic
Alignment’, p. 97). This means that both the placement
of the components inside the compound, and the width
of the compound are determined by the base glyphs and
their anchors.
	 Single letters (‘component copies’): If the base glyph is of
the category ‘Letter’, a spacing combining mark, or a small
figure (e.g., a denominator or scientific inferior), the resulting
compound will be automatically aligned with the base letter,
inheriting its positioning and sidebearings.
	 Letters with accents: If the first component points to a
glyph containing an anchor whose name does not start with
an underscore (e.g., ‘top’), and the second component points
to a glyph containing an anchor of the same name with a
preceding underscore (e.g., ‘_top’), the resulting compound
will be automatically aligned with the first glyph, the ‘base
glyph’. The glyphs of the subsequent components, the ‘marks’
will be automatically placed according to the positions of the
corresponding anchors. This method of automatic alignment is
also referred to as ‘attachment’.
	 Multiple letters, with or without marks: The automatic
placement and spacing of the letters following each other
takes both the glyph widths and their kerning into account.
For example, when building a onehalf fraction out of
one.‌numr, fraction, and two.dnom, the fraction will look as if
its parts were typed individually. To move them to a different
position, you can either space and kern the individual glyphs,
or you can disable the automatic alignment of a component
via the context menu (see further below).
	 Or, you can use exit and entry anchors to create
compounds. Then the beginning sidebearing is taken from the
first base glyph, the trailing sidebearing from the last base
glyph. The relative placement in between is then determined
by the relative position of exit and entry anchors in the base

� Glyphs Handbook, July 2016   104

glyphs of the components. This way, you can place letters, but
also letter parts precisely to each other.
	 Corresponding anchors will trigger automatic mark
attachment feature code (mark and mkmk features). And
for cursive connecting scripts such as Arabic, exit and
entry anchors will trigger automatic code generation for
the cursive positioning feature (curs). If you want to avoid
automatic generation of such GPOS feature code, and use the
corresponding anchors solely for compound alignment, you
can prefix the anchor names with an arbitrary non-letter, e.g.,
#top and _#top, as well as #exit and #entry.
	 By their very nature, automatic alignment and metric
keys are mutually exclusive, with one exception: You can add
space to the sidebearing of an automatically aligned letter
by using the ‘=+’ and ‘=-’ operators, followed by the amount
of additional spacing. For more information, see section 9.1.3,
‘Metric Keys and Automatic Alignment’ (p. 116).
	 Some glyph categories are not automatically aligned,
e.g., numerals. This, for instance, allows to re-use
proportional figures for tabular figures or vice versa. You
can force automatic alignment by Ctrl- or right-clicking a
component, and choosing Enable Automatic Alignment from its
context menu.
	 Also, automatic alignment of components is disabled as
soon as there are any paths in the glyph. Once those paths are
removed again, the components will snap back into automatic
alignment. To explicitly disable automatic alignment of a
component, Ctrl- or right-click on a component, and choose
Disable Automatic Alignment from its context menu. You can
disable automatic alignment for the base, but keep it for
the subsequent marks. Thus, you can move the compound
and change its width, while the marks still stay aligned to
the base.
	 For a complete, font-wide deactivation of automatic
alignment, go to File > Font Info > Other Settings, and check the
Disable Automatic Alignment option.

8.1.8	 Locking Components
For components that cannot or should not be automatically
aligned, there is the option to lock them in their current
position. To do that, select a component, and pick Lock
Component from its context menu. Locked components

� Glyphs Handbook, July 2016   105

cannot be selected, preventing accidental shifts. To unlock
a component again, right click or Ctrl-click it to bring up its
context menu, and choose Unlock Component.

8.1.9	 Decomposing
You can turn all components inside a glyph into editable paths
by choosing Glyph > Decompose Components (Cmd-Shift-D). All
components in the visible layer of the current glyph will be
removed, and its paths and anchors will be inserted instead.
Nested components will be decomposed as well.
	 Selecting Decompose from the context menu of a specific
component only decomposes the selected component. In this
case, nested components will not be decomposed.

8.1.10	 Combining Paths and Components
As soon as there is a path in the layer, automatic alignment is
disabled. Therefore, be careful when combining components
and paths, because shifts may occur, especially if the base
glyph of the component is changed. If you want to prevent
shifts, consider rebuilding the glyph with components and
anchors, thus enabling automatic alignment.
	 While dragging an object over a placed component, vector
points of the component become highlighted. Nodes dragged
above a component snap to the compound nodes. You can
align a component with an outline node by selecting both and
choosing Paths > Align Selection. While the outline node stays
put, the component will be moved above the point so that
the origin of the component will be aligned with the node.
The origin is the point in the component glyph where the left
sidebearing intersects with the baseline, or, if present, the
position of an anchor named ‘origin’. This can be useful for
placing serif components.

8.1.11	 Nesting Components
Glyphs allows you to nest components. For example, you
can build the dieresiscomb glyph out of two dotaccentcomb
components. Subsequently, you can use this compound
dieresiscomb in higher-level compounds such as adieresis (ä).
	 Anchors will shine through in nested components, unless
they are overridden by a specific anchor placement in a higher
compound in the nesting chain. That means that you do not
need to reset anchors in nesting components. E.g., if you are

� Glyphs Handbook, July 2016   106

building oslashacute from oslash and acutecomb, and oslash
is composed of o and slashlongcomb, then the acutecomb
can re-use the ‘top’ anchor of the o. You do not need to set
another ‘top’ anchor in oslash, unless you do want a different
mark placement.

8.1.12	 Preferred Marks for Glyph Composition
When automatically building compounds, Glyphs will prefer
marks that carry the same name suffix as the compound.
For instance, when composing adieresis.sc, Glyphs will prefer
dieresiscomb.sc to dieresiscomb, if it is available in the font.
	 For building compound uppercase letters, marks with
a special ‘.case’ suffix are preferred. E.g., Glyphs will prefer
dieresiscomb.case over dieresiscomb for Odieresis (Ö).
	 When building combinations for i and j, make sure both
idotless and jdotless are in your font. This is because the dot
is typically not included when i and j receive accent marks.
For i and j diacritics, Glyphs will prefer marks carrying a ‘.i’
or ‘.narrow’ suffix. The presence of i, j, idotless, jdotless, and
combining marks will also trigger the creation of the ccmp
feature in File > Font Info > Features (Cmd-I).

8.1.13	 Underscore Components
If you are adding glyphs to your font that are not supposed
to appear in the compiled font, but are solely used as parts in
other letters, then it is advisable to prefix their names with an
underscore character, e.g., _leftBottomSerif or _A.ogonek. This
simplifies finding such glyphs through, for instance, a Smart
Filter (see 6.5.4, ‘Smart Filters’, p. 76), or the Search function
(see 6.1.3, ‘Searching for Glyphs’, p. 66). Also, when glyphs
are generated with a preceding underscore in their name, they
will be created with the Export option off.

8.2	 SMART COMPONENTS
Smart components were developed with Asian scripts in
mind, but can be used for any shape that is reused often with
modifications. In CJK ideographs or scripts like Tibetan, letters
sometimes contain adapted smaller variants of other letters.
In order to take care of this adaptation that makes it fit into
the larger glyph, the smart component technology allows you
to set up a smart glyph with local masters, i.e., masters for
this letter only.

� Glyphs Handbook, July 2016   107

8.2.1	 Setting up Smart Glyphs
A smart glyph is a glyph that can be set up with local masters,
i.e., non-master layers that function as interpolation extremes.
A smart glyph can subsequently be interpolated between
those layers when inserted as a smart component in another
glyph. Any CJK radical and any Korean base glyph will count
as a smart glyph by default. Apart from that, any glyph that
starts with ‘_part’ and carrying a dot suffix, e.g., _part.001 or
_part.arch, will be treated as a smart component.
	 In a smart glyph, add several layers with shape variations,
name them in a way that makes sense to you, e.g., ‘Wide’,
‘Deep’, ‘Narrow’, etc. Then, choose Show Smart Glyph Settings
from the contextual menu (Ctrl-click or right-click) or press
Cmd-Opt-I to open a dialog sheet with options for the current
smart glyph. In the Properties tab, you can specify names and
ranges of local interpolation axes, i.e., interpolations for this
glyph only. We advise to give each property a sensible name,
and also a Bottom and a Top value that makes sense to you.
For example, if you are setting up a part with an adaptable
descender depth, you may want −100 as Bottom value, and 0 as
the Top value. Or a letter part that can adapt its width, e.g., the
shoulder in n and m, you could take a Bottom value of 0 for
the minimum width, and a Top value of 100 for the maximum
width. We recommend using measured values wherever
possible, e.g., the actual height of an ascender for its Height
property:

	

Once you have set up properties, you can then switch to the
Layers tab and assign an extreme for every property to each
layer. E.g., the Regular layer is set as bottom width and top
depth, the Wide layer as top width and top depth, and the

� Glyphs Handbook, July 2016   108

Deep layer as bottom depth and bottom width. Make sure
all properties in all layers are set to an extreme. When used
as smart component in a different glyph, the shapes can be
interpolated between the layers you assigned in the Layers tab,
and along the axes you specified in the Properties tab.

	

While each smart glyph master needs to be a separate
layer, you do not need to draw every extreme in a multiple
dimension setup. E.g., if you have two properties like Height
and Width, each of them interpolating between 0 and 100,
you only need layers for three of the extremes. For instance,
if you have 0 Height / 0 Width, 100 Height / 100 Width, and
0 Height / 100 Width, you do not need to draw a layer for
100 Height / 0 Width anymore, unless you are not content with
the resulting extrapolation.
	 Glyphs recognizes two special properties, ‘Width’ and
‘Height’, spelled with a capital letter. Using these names
enables you to use bounding box scaling of placed smart
components. To use the bounding box, activate View > Show
Bounding Box (Cmd-Opt-Shift-B).

8.2.2	 Adding Smart Components
Inside a regular glyph, you add smart components by
adding components as described in section 8.1.1, ‘Building
Compounds’ (p. 98), only this time, you pick smart glyphs,
i.e., CJK radicals or glyphs that start with ‘_part’. This is easily
achieved by simply typing an underscore in the search field of
the Glyph > Add Component dialog (Cmd-Shift-C). It will then
list all glyphs that start with an underscore. It should be easy
to pick out the desired _part glyph then.

� Glyphs Handbook, July 2016   109

8.2.3	 Smart Component Settings
In a glyph containing smart components, you can Ctrl-click
or right-click a smart component, and choose Show Smart
Component Settings from the context menu, or press Cmd-Opt-I.
This brings up a dialog that allows you to interpolate the
smart component in place. Sliders and number fields control
the property values specified in the individual smart glyphs.
Any changes are visible immediately.

	

You can also extrapolate if you type numbers beyond the top
and bottom values in the number fields. You can also step
through numbers with the up and down arrows. Hold down
the Shift key for increments of ten.

8.2.4	 Part Anchors
When multiple pieces are combined in one compound glyph,
their respective positions can be automatically aligned if
you use anchors with corresponding names, i.e., an anchor
with a name starting with a letter in the base smart glyph,
e.g., ‘connect’, and an anchor with the same name except for
a preceding underscore in the connecting smart glyph, e.g.,
‘_‌connect’. You can use both kinds of anchors in the same
smart glyph in order to chain smart components inside
a glyph.

8.3	 CORNER AND CAP COMPONENTS

8.3.1	 Corner Components
Corner components are open path fragments that can be
dynamically fitted into an outline. The main purpose for
corner components is to facilitate the construction and
management of serifs.
	 In order to set up a corner component, you need to create
a glyph with a name that starts with ‘_corner’, followed by
an arbitrary dot suffix, e.g., _corner.leftSerif. Inside the glyph,

� Glyphs Handbook, July 2016   110

you draw an outline around the origin point, or, alternatively,
around an anchor named ‘origin’. Optional ‘left’ and ‘right’
anchors control the amount of distortion for adjusting the
path fragment to fit into the receiving path:

	 origin

left

The path direction, as indicated by the arrowheads at the
open path ends, should match the orientation of the intended
target paths. That means that if you are constructing a lower
left serif, your serif path should start at the top point, bend
around the origin, and end in the lower right point. To change
the path direction, select the path, and choose Reverse Selected
Contours from the context menu.
	 Once you are done with the corner component glyph, you
can then proceed to insert the corner component into the
outline of another glyph. To achieve this, select exactly one
corner node in the outline of the glyph, and choose Add Corner
from its context menu. The path fragment will immediately
be bent into the corner, and also adapted to the slant of its
surrounding outline segments.

	

You can press the Delete or Backspace key to remove it, you
can copy the corner component into your clipboard and paste
it on another node, or you can change its settings in the gray
Info box. Via the Info box, you can switch to the original
corner component glyph by clicking on the little arrow
symbol. You can change which corner component is used by
clicking on the name, as well as the scale, and the alignment
of the corner component. The alignment controls which side
of the corner component stays put while the other side gets

Tip: employing both left and
right anchors in the corner
component allows building

of cupped serifs ready for
automatic flex hinting.

� Glyphs Handbook, July 2016   111

bent into the outline of the target path. You can have a corner
component:
 • � left-aligned, i.e., aligned with the stroke the entrance

point is put upon, and the exit stroke stays put, which is
typically what you want for a lower left or top right serif;

 • � right-aligned, i.e., aligned with the stroke the exit point
is put upon, end the entry stroke stays put, which is
usually what you want for top left or bottom right serifs;

 • � center-aligned, i.e., rotated between both alignments, so
neither entry nor exit stroke stays put, which makes sense
for ink traps and the like.

Generally, the presence of ‘left’, ‘right’ and ‘origin’ anchors, the
open path direction, and the alignment setting determine
the rotation and positioning of the corner component on
the target path. For simple serifs, you can influence the
adjustment and positioning of the curve in slanted stems, for
instance, when you need to control how far a serif can stick
out horizontally at the end of a slanted stem. To do that, add
an anchor called ‘left’ or ‘right’ precisely above the origin. Pick
‘left’ for a left-aligned corner component, ‘right’ for a right-
aligned one, or both for a center-aligned corner component or
cupped serif. The distance between the origin and the anchor
controls the amount of adjustment: Moving it up will shorten
the corner components on an acute position, and elongate
it on a blunt one. Moving it down will achieve the opposite.
Cornered slab serifs (as opposed to bracketed serifs) will
need these anchors exactly on the joint between vertical and
horizontal segments.
	 If your design permits it, you can mirror corner
components and reuse them on the opposite side. I.e., you
can reuse a left serif on a right corner if you set its horizontal
scale to −100%.
	 To decompose a path with corner components into its
calculated state, you can remove overlaps by choosing Filter >
Remove Overlap (Shift-Cmd-O). Decompose individual corner
components by selecting them, and choosing Decompose Cap
from the context menu.

8.3.2	 Caps
Caps work very much like corners except that they connect to
two adjacent nodes rather than a single one. The idea behind

Tip: the quickest way to mirror
a corner component is to select
it and press the mirror buttons
in the Transformations palette.

� Glyphs Handbook, July 2016   112

Caps is that they can be used for spurs, finials, or head serifs
like on the top of a lowercase u.
	 In order to create a Cap, generate a glyph with a name that
starts with an underscore, followed by ‘cap’ and an arbitrary
dot suffix, e.g., _cap.headSerif. Draw an open path around the
origin point, with the connecting ends coming out on or above
the baseline, i.e., a head serif would need to be drawn flipped
(turned 180°) and on the baseline. Put the entry point of the
open path on or above the origin. If necessary, change the
path direction by selecting the open path and choosing Reverse
Selected Contours from its context menu. Again, the origin
can be the origin point of the glyph, i.e., where the baseline
intersects with the left sidebearing, or it can be an anchor
called ‘origin’.

	
origin

In a target glyph, select exactly two adjacent nodes, e.g., the
top nodes of the rectangle representing a stem. From the
context menu, you can now choose Add Cap. The application
will present a list of all available ‘_cap’ glyphs. Pick the one
you want and click the Select button or press the Return
key to confirm the dialog. The cap component will get bent
into the receiving shape according to its position relative to
the baseline. Caps work best if the two receiving nodes have
the same horizontal distance as the two end nodes of the open
path inside the cap.
	 You can control the way the cap is adapted to the target
path by clicking on the gray selection knob, and choosing
options in the gray Info box. You can change the scale by
entering a new percentage value for the vertical or horizontal
scale. The Fit option scales the cap horizontally so that
the open ends fit on to the two nodes of the target path.
The option will disable the horizontal scale value. Change

� Glyphs Handbook, July 2016   113

alignment by clicking on the alignment symbols. Aligning to
the left or right will orient the Cap to one side of the receiving
path and take positions of the ‘left’ and ‘right’ anchors
into account. The position of both ‘left’ and ‘right’ anchors,
vertically relative to the baseline and horizontally relative to
the start and end points, determines how the cap is bent onto
the receiving nodes of the target path.

	

To change the cap, click on the name in the Info box, and
choose a different cap in the following dialog. To open the cap
for editing, click on the little arrow symbol.
	 To decompose a cap and insert it into the host path, select
it and choose Decompose Cap from its context menu. To do
the same with all corner components present on the current
layer of a glyph at once, choose Filter > Remove Overlap (Cmd-
Shift-O). To remove a cap from an outline, select it by clicking
on its gray knob, and press Delete or Backspace.

� Glyphs Handbook, July 2016   114

9	 Spacing and Kerning
9.1	 SPACING

Spacing is the process of adjusting the sidebearings of each
letter to achieve an even rhythm in a line of text. There are no
fixed rules for adjusting the white space. However, unless you
are working on a monospaced font, similar or same shapes
should have the same sidebearing, e.g., the D will usually have
the same LSB as the H, but its RSB closer to or the same as in
the uppercase O.
	 In Edit view, you can trigger the display of spacing
information by activating View > Show Metrics (Cmd-Shift-M).
When a glyph is active, this option shows the rectangle
that indicates the width of the glyph and the vertical
measurements of the master.

	

9.1.1	 Spacing Shortcuts
There are keyboard shortcuts to change the spacing of the
current letter in Text mode (shortcut T). Hold down the Ctrl
key and use the left and right arrow keys to change the LSB.
Cmd and arrow keys change the RSB. Hold down both Ctrl
and Cmd keys to change both LSB and RSB simultaneously,
effectively moving the glyph inside its width. Add the Shift
key to manipulate in increments of 10 units.
	 The shortcuts for changing the LSB collide with default
shortcuts for switching between OS X Spaces. You can change
or deactivate the Spaces shortcuts in the System Preferences.

9.1.2	 Metric Keys
In order to link metrics between glyphs, you can use so-
called metric keys instead of mere numeric metric values. Put
the name of the glyph you want to link to in the respective
sidebearing or width field and it will automatically adopt the

‘LSB’ stands for the left, ‘RSB’ for
the right sidebearing of a glyph.

Easy to memorize: the Ctrl key
is located on the left, the Cmd
key on the right. The keys are

associated with the left and
right sidebearing, respectively.

� Glyphs Handbook, July 2016   115

sidebearing or width of the linked glyph. Note that keyed
metrics are not kept in sync automatically. You need to select
the glyphs that need updates and select Glyph > Update Metrics
(Ctrl-Cmd-M) or Glyph > Update Metrics for all Layers (Ctrl-Opt-
Cmd-M). In Edit view, out-of-sync metrics are colored red
in the Info box and show an update button. Clicking on the
update button updates only the metric key next to it.

	

In Font view, glyphs which are not in sync are marked with a
yellow warning sign in the top right corner of the cell:

	 006Dm

You can even enter simple calculations into the sidebearing
field. Calculations need to start with an equals sign (=). For
instance, ‘=n+10’ will take the same sidebearing of n and
add 10 units, ‘=n-10’ subtracts 10 units, ‘=g/2’ yields half
the sidebearing of g, and ‘=v*2’ doubles the sidebearing of v.
Simply ‘=n’ has the same effect as writing ‘n’ into the field.
And equating with a number, e.g., ‘=20’, allows to update to
a predefined width or sidebearing. This can be useful for a
monospaced font where the width of all glyphs must be the
same, or for a connecting script font where the sidebearings
must stay at a fixed value.
	 Use a double equals sign (==) instead of a single equals
notation to specify a local metrics key. This means that the
specified calculation is valid for the respective master only.
This is necessary if you want different keys in different
masters.
	 Use the pipe character (|, Shift-backslash on a U.S. keyboard,
Opt-7 on a German keyboard, Opt-1 on a Spanish keyboard) to
reference the opposite sidebearing. E.g., in the LSB of u, you
can enter ‘=|n’ to use the RSB of n for the LSB of u.

� Glyphs Handbook, July 2016   116

9.1.3	 Metric Keys and Automatic Alignment
In order to additionally manipulate a sidebearing that is
already governed by automatic alignment, use the equals sign
followed by the respective mathematical operator and the
number indicating the additional amount of whitespace, e.g.,
‘=+20’ or ‘=-10’. This structure adds to, or subtracts from, the
value that is calculated by automatic alignment.
	 This can be useful in cases where you need to extend a
sidebearing to accommodate specific diacritic marks, but want
to keep the compound auto-aligned. Typical examples in Latin
typography are glyphs such as lcaron or dcaron, which employ
a vertical caroncomb.alt on the right, and may therefore need
additional sidebearing on the right.

9.2	 KERNING
If the spacing has been done properly, most glyphs fit well
next to each other. But some glyph pairs still need specific
adjustments. Usually, glyphs with a lot of white space are
problematic. E.g., V before A, L before W, or T in combination
with an unaccented lowercase letter like o will look like there
is too much space between them. This is where kerning comes
into play. Kerning is the adjustment (increasing or decreasing)
of distance between two specific letters.

9.2.1	 Ways to Kern
To define these kerning pairs, switch to the Text tool
(shortcut T), type both glyphs in the Edit view and place the
cursor between them. The left field (labeled Kerning) in the
Info box will show the kerning value for the combination of
the previous glyph with the active glyphs. On the opposite end
of the Info box, the Kerning field shows the kerning value for
the combination of the active glyph with the following one.
Just click and type a value there.

	

Or use the keyboard shortcuts for much greater convenience.
Ctrl-Opt-arrow keys changes the kerning towards the letter on
the left side of the current letter, while Opt-Cmd-arrow keys

Tip: Again, Ctrl (to the left of
the Option key) corresponds to
the left side of the glyph, Cmd

on the right to the right side.

� Glyphs Handbook, July 2016   117

change the kerning with the letter following on the right. Add
the Shift key for increments of 10.

9.2.2	 Kerning Groups
Many glyphs look similar and need the same kerning values.
Kerning groups capture these similarities and help you reduce
the number of pairs that need to be set manually. Kerning
then applies not just to pairs of glyphs, but of groups of
glyphs. This way, you can not only kern A and T with each
other, but all accented A and T glyphs as well, given that they
all reside in the same groups.
	 In Glyphs, kerning classes are not edited as glyph lists.
Instead, the class membership is defined as a glyph property.
For example, put O in the left kerning group field for all glyphs
that look like an O on the left (like C, Ccedilla, G, Odieresis, and
O itself). Add a value to each glyph, even if it remains the only
glyph in its group.

	

The small extra panel on the left of the Info box displays
kerning info for the glyph to the left of the cursor: It shows
the name of the left glyph, its group lock for the current pair,
and its kerning group at the bottom.
	 You can introduce exceptions to group kerning by opening
the group locks in the gray Info box. Thus you can have
different kerning pairs for ‘To’ and ‘Tö’, for example. Close a
group lock to remove the kerning exception for that glyph.
Within one pair, the kerning can be an exception for one glyph
while it applies to the whole group for the other glyph. E.g. the
kerning value defined for ‘Tö’ can be an exception for ö, since
it does not apply to the other o glyphs. Thus, for ö, the (left)
lock is open. However, the value does apply to all T’s including
variations like Ť or Ț. So, for T, the lock remains closed.
	 You can rename a group and keep all its kerning values
in the new group name by renaming the group in any of its
entries in Window > Kerning (Cmd-Opt-K). To rename a group,
double click, or select and tab into, the name in the window,
and type a new name. Glyphs will then ask you to confirm the
renaming of the group. E.g., if you rename the left @H group

Tip: The ‘Set Kerning Groups’
script from github.‌com/​

schriftgestalt/Glyphs-Scripts can
create kerning groups for you.

http://github.com/schriftgestalt/Glyphs-Scripts/
http://github.com/schriftgestalt/Glyphs-Scripts/

� Glyphs Handbook, July 2016   118

to @B, you will turn all group kernings with @H on their right
side (such as @slash-@H) into group kernings with @B on
their right side (e.g., @slash-@B).
	 Alternatively, and in the same dialog, you can choose to
only change the kern pair in question, by confirming the
change of the pair rather than its renaming. In that case,
the kerning groups remain as they are, only the kern pair in
question is moved to a new group. E.g., you have accidentally
kerned @d-@h to fit the dcaron, and now there is too much
space between two following ascenders. To resolve this, you
can assign @dcaron as a new right group to dcaron, and then
rename the @d-@h kerning pair to @dcaron-@h. In the
ensuing dialog, confirm by clicking the Change button.

	

9.2.3	 Finding and Viewing Kerning Pairs
The Kerning window (Window > Kerning ) lists all available
kerning pairs, sorted by the first glyph or glyph class of the
pairs. Groups are marked with an at sign, e.g. ‘@A’ for the A
kerning group, and displayed in dark blue. Individual glyphs
are displayed in a softer beige.
	 Clicking on a pair in the Kerning window displays it in
the current Edit tab, provided that either the Kerning or
Locked Kerning in the bottom right corner of the window
is active. if the currently selected pair contains a group, you
can choose Show All Glyphs from the gear menu to insert all
possible glyph combinations for the current groups in the
front-most Edit tab.
	 The search field on top of the Kerning window allows you to
narrow down the displayed pairs. Clicking on the magnifying
glass symbol gives you additional options, such as searching
only for one side, only for groups or glyphs, etc.
	 You can color mark the kerning between glyphs in a
sample text in Edit view if you display the measurement
line via View > Show Measurement Line. For more details,
refer to section 3.9, ‘Measuring’ (p. 38). If the View > Show

� Glyphs Handbook, July 2016   119

Metrics (Cmd-Shift-M) option is on, and the zoom level is large
enough, small color markers at the baseline will be displayed.

. .

. .

. .

. .

. .

. .

9.2.4	 Deleting Kerning Pairs
In the Kerning window, clicking on the minus button in the
bottom left corner deletes all selected kerning pairs. For the
current glyph pair (i.e., the glyphs to the left and right of the
cursor), you can simply delete the kerning value in the gray
Info box (Cmd-Shift-I).

9.2.5	 Copying Kerning Pairs
To copy kerning pairs from one font master to another,
first select the kerning pairs you want to copy in Window >
Kerning (Opt-Cmd-K). To select all kerning pairs, click in the
Kerning window to put the focus on it, and choose Edit > Select
All (Cmd-A). Then, choose Edit > Copy (Cmd-C), switch to the
receiving font master, and paste (Cmd-V) the values into the
Kerning window. A dialog will ask you what to do if existing
kerning pairs are going to be overwritten.

	

9.2.6	 Cleaning up Kerning
After removing glyphs or after importing, invalid or
impossible kerning pairs may be left over. You can remove
them with the Clean Up function from the gear button in the
Kerning window.

� Glyphs Handbook, July 2016   120

9.2.7	 Compressing Kerning
If you have kerned a few glyphs with each other before
having set kerning groups, you can convert the singleton
kerning pairs into group kerning with the Compress function
of the gear button in the Kerning window. The function will
delete the kerning between individual glyphs, and recreate
it with their respective kerning groups wherever possible.
Compressing kerning will keep explicit kerning exceptions that
differ from the group kerning, but will remove exceptions that
have the same value as corresponding group kernings. You
may need to repeat the compressing process in order to catch
all singletons.
	 E.g., assuming you have a kern pair Ť-m, i.e., kerning
between an uppercase Tcaron (right group: @T) and a
lowercase m (left group: @n), compressing it once will turn
it into a kern pair of the @T group and the lowercase m,
compressing it a second time will turn it into @T kerned with
@n. Now the same kerning will work with all glyphs in the
@T right group and the @n left group. However, it will keep
exceptions such as uppercase T kerned with lowercase ň,
provided it has a different value than Ť-m.

9.2.8	 Optional ‘kern’ Feature Lookup
In File > Font Info > Features, you can add a feature called ‘kern’.
Whatever you enter here will be added as a separate lookup
called ‘kernCustom’ at the end of the kern feature in the
features file. Since it is font-wide feature code, this additional
kerning is not interpolated, but simply added to existing,
interpolated kerning pairs. This is a good place for contextual
kerning, which sometimes is needed for adjusting punctuation
between certain letters, or situations where negative kerning
would otherwise eat up the space, e.g.:
	 pos f ' 60 space [T V W];
	 pos L' -50 quoteright' 60 A;
In the first example, the f-space pair receives an extra 60 units
only before T, V, W. In the second line, the combination L’A is
treated as follows: the quoteright is pushed into the L by 50
units, and the A is moved to the right relative to quoteright
by 60 units. Effectively, the quoteright is moved to the left
and 10 units extra space are added between L and A. This only
happens in this exact constellation. I.e., the second line does
not affect the combinations L’O or l’A.

Tip: You can reuse the kerning
groups by prefixing the group

name of the left glyph with
@MMK_L_ and the group

name of the right glyph
with @MMK_R_. E.g., the L’A

example here could read:

pos @MMK_L_L' -50
quoteright' 60 @MMK_R_A;

This assumes the right group
of L is called L and the left

group of A is called A.

� Glyphs Handbook, July 2016   121

10	 PostScript Hinting
10.1	 HINTING

PostScript hinting is a method to improve display at low
resolutions for fonts with PostScript outlines. These will
usually be OpenType/CFF fonts with an .otf file name suffix.
	 The eventual picture on the screen is created by software
called the rasterizer. In PostScript-based fonts, the rasterizer
needs to be relatively ‘smart’, because the fonts are said to be
rather ‘dumb’. But we can place ‘hints’ in the font, which the
rasterizer can use to improve the rendering.
	 Most hinting information revolves around determining
which part of a letter is a necessary stroke element and
should not be omitted in small sizes. In order to achieve this,
there are two kinds of hints. Firstly, general information
that applies to the entire font. This is referred to as ‘font-
level hints’ or ‘font-wide hints’, and encompasses standard
stems and alignment zones. Secondly, there are little pieces
of information placed inside a glyph that help the rasterizer
stretch the outline across the pixel grid. These are called
‘glyph-level hints’, and can be either stem hints or ghost hints.
	 Best practice is to choose good font-level hints, and
subsequently let an algorithm called the ‘autohinter’ find the
glyph-level hints for you.
	 Hinting only makes sense if the font has repeated regular
features. If the font is very irregular, like many handwritten
fonts are, or like ornamental and grunge fonts, then hinting
cannot help improving the rendering. Also, if your font is
intended for exclusive use in environments where hinting
information is ignored, like displays with a very high
resolution, or on Apple hardware running OS X or iOS, then
hinting will only make the font file larger. In cases like these,
it is advisable to not hint the font.
	 Keep in mind that the intention of PostScript hinting
is to create a sharper, more consistent pixel image at low
resolutions. That means that the outline will be distorted
to achieve a better fitting on the pixel grid. In other words,
hinting does not preserve shapes, on the contrary. If you have
a font where the preservation of the shape is more important
than a crisp pixel image, such as in connecting script typefaces
and in icon fonts, hinting does not make sense.

� Glyphs Handbook, July 2016   122

10.2	 FONT-WIDE HINTS
Before you do glyph-level hinting, you need to define a set
of parameters that apply to all hinting throughout the font.
These font-level hints are stored in the so-called ‘PostScript
Private Dictionary’ inside the exported font. For an in-depth
discussion, see the following links:
 • � partners.adobe.com/public/developer/en/font/T1_SPEC.PDF

(specifically pages 35 – 45),
 • � vimeo.com/38364880 (video of a presentation about PS

hinting by Miguel Sousa from Adobe, approx. 35 min).

10.2.1	 Standard Stems
Stem widths are the thicknesses of your letter strokes.
A vertical stem is the width of a vertical stroke of a letter, e.g.,
the thickness of the uppercase I, or the thicknesses of left
and right curves of an O. A horizontal stem is the thickness
of a horizontal stroke movement, e.g., the serifs or crossbars
of uppercase A and H, or lowercase t and f, or the upper and
lower curves of an uppercase O.
	 And finally, standard stems are average values, as
representative as possible for as many stem widths in the
font as possible. The autohinter needs good standard stem
values in order to recognize the stems and insert glyph-level
hints automatically. And the screen rasterizer can make use
of these values to optimize the pixel rendering, especially
synchronizing stem thicknesses across the whole font at
low resolutions.
	 Try to find as few as possible, and as representative as
possible values for your horizontal and vertical stem widths
and enter them in Edit > Font Info > Masters (Cmd-I), in the
Vertical Stems and Horizontal Stems fields. If two values are
close to each other, it is a good idea to merge them into one
average value. You can quickly measure the thickness if you
select two nodes and take a look at the gray Info box (Cmd-
Shift-I) or by switching to the Measurement tool (see 3.9,
‘Measuring’, p. 38).
	 For instance, if you measure 68, 71, 72, 74, 75, 82, 83, and
85 for your vertical stems, then you would pick 75 or 80 as
standard vertical stem, because either would be a good median
value for most of the stem measures. By using a single stem
value, the stems will scale more uniformly across low PPMs.

PPM stands for pixel per em, and
is a measurement for the screen

size. It effectively tells you the
vertical size of your em in pixels.

http://partners.adobe.com/public/developer/en/font/T1_SPEC.PDF
http://vimeo.com/38364880

� Glyphs Handbook, July 2016   123

	 Theoretically, up to twelve stem width values can be
considered for each orientation. But the best practice of
trying to find as few as possible will typically either result in
a single representative value for all stems, or in two values:
one for lowercase and one for uppercase letters, or (in the
case of horizontal stems) one for an average horizontal stroke,
and one for the serifs. Use a second or third value only if it
is acceptable that the associated stems will have different
thicknesses at the same pixel size. For instance, if you have
a vertical standard stem set at 70, and another one at 80, the
first stem may be displayed as two pixels wide, while the other
stem may get three pixels at a certain pixel size.
	 The first value you enter in the Horizontal Stems or Vertical
Stems is the most important one. Use a value that represents
your most-used glyphs, typically the lowercase letters. This
value is also used by other functions in the application, such
as the Cursify algorithm or the Rounded Font filter. Any values
that follow are exclusively used for hinting, the horizontal
stems can also play a role in TrueType hinting. See section 11.3,
‘Manual Instructions’ (p. 133), for more details.
	 In a Multiple Master setup, values in individual masters are
interpolated, so make sure you enter the values in the same
order in each master.

10.2.2	Alignment Zones
When your font is rendered with very few pixels on a
computer screen, all the x-heights should align to the same
height, i.e., use the same amount of pixels vertically. The
same applies to ascenders of letters like f, h, or k, and to
descenders of g, p or y, and to the heights of all capital letters.
And of course, all letters should share the same baseline when
rasterized at a low resolution.
	 But all these letters usually do not really align precisely.
For instance, the bottom of a lowercase o will extend slightly
below the baseline, while the serifs of an n may sit exactly
on it. Or the apex of an uppercase A may extend a little
bit beyond the height of an uppercase H. This difference,
usually some ten to fifteen units, is commonly referred to
as ‘overshoot’.
	 Alignment zones are a way to tell the rasterizer about
the overshoots. At small pixel sizes, we do not need to see
overshoots, so their display should be suppressed. Or, more

� Glyphs Handbook, July 2016   124

precisely, at low resolutions, any path constellation (a) with a
horizontal stem or ghost hint attached to it, that (b) reaches
into an alignment zone will be vertically aligned to the
zone position.
	 Alignment zones take two values: a position and a size.
The position is the vertical height of the zone, usually the
vertical metrics, like x-height or ascender. The position is
sometimes also referred to as the ‘flat edge’ of a zone. The size
is the thickness of the maximum overshoot that may appear
at that position. If the overshoot extends above the position
(e.g., x-height, small cap height, cap height, ascender), the
size value must be positive. Such zones are referred to as ‘top
zones’. If, however, the overshoots extend below the position
(e.g., baseline, descender), the size must be negative and we
call them ‘bottom zones’.

	

Alignment zones should be as small as possible, so do not
try to make them larger ‘to be on the safe side’. In any event,
a zone must not be larger than 25 units. You can have a
maximum of 5 top zones and 6 bottom zones. Zones must
not overlap. There must be a minimum distance of one unit
between them, the larger the better. The baseline zone must
have a position value of zero.
	 If you make use of an alternative grid, i.e., if you employ
Grid Spacing or Subdivision values other than 1 (see 7.5.1, ‘Grid
Spacing and Subdivision’, p. 96), then you need to extend the
scope of your zones by one unit in both directions in order
to catch potential small rounding errors for vertical node
positions. I.e., the position must be shifted by one unit, and
the size by two units. Only the baseline zone must be kept at
position zero, while its size is increased by one unit.

A typical alignment zone
setup: top zones with positive

widths at ascender, cap
height and x-height; bottom

zones with negative widths
at baseline and descender.

More precisely, the maximum
size of an alignment zone is

constrained by the blueScale
value (see below), which implies

that no zone must be larger
than 240 ÷ (240 × blueScale – 0.98).

� Glyphs Handbook, July 2016   125

10.2.3	Custom Parameters
Apart from the alignment zones and standard stems, there are
more optional parameters in the Private Dictionary: blueScale,
blueShift, and Family Alignment Zones. In Glyphs, you can set
these values as custom parameters. For a detailed discussion
of what they do and how to apply them, please see their
respective entries in section 17.3, ‘Custom Parameters’ (p. 180).

10.3	 AUTOHINTING
If the font-wide parameters, i.e., alignment zones and
standard stems, are set properly, you can let the autohinting
algorithm do its magic by simply activating the Autohint
option in the File > Export dialog. You can also enforce this
setting with the Autohint custom parameter.
	 Test the hinting in an Adobe application (see 3.12.7,
‘Previewing in Adobe Applications’, p. 49). Write a test text
and zoom out far enough so that the letters are displayed with
a few pixels only. Then zoom in using the operating system’s
Zoom function, which you can configure in the Accessibility
settings of the System Preferences. If necessary, tweak your
font settings or manually hint a problematic glyph and
re-export. For details on manual hinting, see section 10.4,
‘Manual hinting’ (p. 126).

10.3.1	 Flex Hints
If the font has cupped serifs or slightly tapered stems, the
autohinter can automatically apply so-called flex hints. Flex
hints suppress the display of such shallow curves at low
resolutions. You cannot manually set flex hints, they are
automatically applied when the font is exported. In order for
flex hinting to kick in, a few conditions must be met.
	 First, the blueShift value must at least be set to the depth of
your cups plus one. E.g., if your serifs are cupped 5 units deep,
blueShift should be set to 6 or more. You can set blueShift as a
custom parameter in File > Font Info > Font (Cmd-Shift-I).
	 Secondly, there are a few outline requirements. The cup or
tapering must be built from exactly two consecutive outline
segments between three nodes. The segments do not need to
be symmetrical. The first and third node must share the same
x coordinate (for tapered stems) or the same y coordinate
(for cupped serifs). The four handles need not be completely
horizontal (serifs) or vertical (stems), but the three nodes must

� Glyphs Handbook, July 2016   126

be placed on the extremes of the two segments. The overall
depth must not exceed 20 units.
	 Thirdly, in the case of cupped serifs, it is recommended that
the three points are completely submerged in the respective
alignment zone. For best results, the second node (in the
middle) should be exactly on the position (the ‘flat edge’) of
the zone. And the other two nodes must reach into the zone.
This means that cupped bottom serifs reach a little bit below
the baseline, and into its bottom zone, which may seem
counter-intuitive at first.

	

baseline
zone1 2 3

10.4	 MANUAL HINTING
The implementation of PostScript hinting in Glyphs allows
manual and automatic hints inside the same font. So, before
resorting to manually inserting hints into your glyphs, we
recommend to try to get as far as possible with autohinting.
Only glyphs that do not display properly at low resolutions
will need manual intervention.
	 Manual and automatic hinting cannot complement each
other inside the same glyph. Any manually hinted glyph is
excluded from the autohinting process. Thus, if you decide to
add hints manually, you must fully hint the glyph.
	 There are two types of glyph-level hints you can add
manually, stem hints and ghost hints. Stem hints describe a
vertical or a horizontal stem or stem-like feature of a glyph,
like a serif or a crossbar. Ghost hints mark top and bottom
edges when a horizontal stem hint cannot be applied.
	 In combination with alignment zones, horizontal ghost and
stem hints are important for the vertical alignment at the
vertical font metrics, like the x-height or the ascender. At low
resolutions, the rasterizer will try to vertically align the edges
of all hinted horizontal stems that reach into an alignment
zone. The horizontal hints must have their y coordinates in
common with the nodes that are supposed to align. A single
hint will do for all nodes it touches at its height.

Flex hints: Nodes 1 and 3 are
on the same level and inside
the alignment zone, node 2

should be exactly on the flat
edge of the zone. The handles

must stay inside the space
defined by nodes 1 through 3.

� Glyphs Handbook, July 2016   127

	 Stem hints can overlap each other, e.g., the vertical stem
hints in the figure eight. Technically, PostScript hinting does
not allow overlapping of hints. So, in cases like this, Glyphs
will automatically insert pieces of information called ‘hint
replacement’, which turns hints on or off for different parts of
the glyph outline. In practice, you do not need to worry about
overlapping hints.
	 In a Multiple Master setup, only hints in the first master
(the topmost master in the sidebar of File > Font Info > Masters)
will be considered. In this case, make sure all your manually
set hints are linked to nodes on the outline (see 10.4.1, ‘Stem
Hints’, p. 127).
	 You can get a good start by right-clicking anywhere in the
canvas in Edit mode, and choosing Autohint from the context
menu. This way, glyph-level hints will be inserted similar to
the way the autohinter would have done it when the font is
exported. You can now edit them as described in the following
sections. But keep in mind that, because of the presence of
manually inserted hints, this glyph is now excluded from
autohinting at export time.

10.4.1	 Stem Hints
To add a stem hint to a glyph, right-click and choose Add
Horizontal Hint or Add Vertical Hint from the context menu.
A gray bar with a number badge will appear. The numbers
indicate the origin (first number) and width (second number)
of the hint.
	 If you add a hint while two nodes are selected, the hint
will be linked to these nodes right away. Adding linked hints
this way even works on multiple node pairs at once, as long
as each pair is on a separate outline. For best results, always

� Glyphs Handbook, July 2016   128

link your hints to extremum nodes (see 3.3.13, ‘Extremes and
Inflections’, p. 26).

	

Select a hint by clicking on its gray number badge. Shift-
click to select multiple hints. You can then edit the values
numerically in the gray Info box (View > Show Info, Cmd-
Shift-I). When exactly one hint is selected, press Tab to select
the next hint, or Shift-Tab to go to the previous one.

	

To edit a hint graphically, drag the blue marks at the edges of
the hint. The blue circle indicates the hint origin, while the
triangle shows the size and orientation of the hint. If you drag
one of the markers onto a node, Glyphs will link the hint to
the position of the node. If you later move the node, the hint

Positioning of vertical stem
hints (green) and horizontal

stem hints (yellow).

A horizontal stem hint, its
number badge indicating a

position of 140 and a width of 40.

� Glyphs Handbook, July 2016   129

will adapt accordingly. You can delete one or more hints by
selecting them and pressing the Backspace or Delete key.

	

In the final OTF, all stem hints must be positive, i.e., have a
width greater than zero. But even if you mistakenly insert a
negative hint, Glyphs will correct its direction at export time,
and all stem hints are turned positive.

10.4.2	Ghost Hints
You can use ghost hints when you need to vertically align
the top or bottom of a glyph but cannot apply a horizontal
stem hint. Take, for instance, a sans-serif uppercase I. The top
needs to align with the cap height zone, the bottom with the
baseline zone. In a serif I, you would apply horizontal hints
to the serifs, but the sans-serif letter lacks the horizontal
features necessary for a horizontal hint. In this case, you need
to put a top ghost hint on the top of the I, and a bottom ghost
hint at the bottom of the I. Similar situations occur on the top

Hints linked to nodes with the
blue triangle and circle. Stem

hints must be positive, i.e.,
the triangle must be to the
right or above of the circle.

� Glyphs Handbook, July 2016   130

of a sans-serif uppercase L, and at the bottom of a sans-serif
uppercase P:

	

You can create a ghost hint by right-clicking on a single node
and choosing Add Horizontal Hint from the context menu.
Turn any existing hint into a ghost hint by right-clicking the
coordinate badge of a hint and choosing Make Ghost Hint from
the context menu. The badge of a ghost hint only displays the
position and its orientation. A downward arrow indicates a
bottom ghost hint, an upward arrow a top ghost hint. Attach
it to a point by dragging the blue circle onto a node. You can
set its vertical orientation by selecting the hint and clicking
on the upward or downward icon in the gray Info box (View >
Show Info, Cmd-Shift-I).

	

10.4.3	Hinting Multiple Masters
In a compatible Multiple Master setup, you only need to insert
hints in the first master. Provided the hints are linked to nodes
on the outline, and the paths are compatible, they will be
transfered to the corresponding nodes in compatible masters
at interpolation time. The first master is whatever master is
on top in the sidebar of File > Font Info > Masters (Cmd-I).
	 Manual hints in other masters will be ignored, unless there
are no hints in the first master. Depending on the designs of
your masters, it may make sense to hint a different master,
or drag another master into the first position in the Font Info
sidebar. For instance, if your first master is a very light weight,

Positioning of ghost hints (blue)
alongside regular stem hints.

A top ghost hint at position
100, and a bottom ghost

hint at position 50.

� Glyphs Handbook, July 2016   131

it can become difficult to select the right nodes and apply
manual hints on the outlines. In this case, it may be favorable
to hint the Regular or Bold master.
	 And when you make use of Bracket and Reverse Bracket
tricks (see 4.4.2, ‘Special Layers’, p. 53), you may also need
to insert hints in the layer that replaces the master layer tat
carries manual hints.

� Glyphs Handbook, July 2016   132

11	 TrueType Hinting
11.1	 INSTRUCTIONING

Even though it is commonly referred to as ‘hinting’, including
the title of this chapter, TrueType does actually not use
‘hints’. Rather, it applies something called instructions, which
very precisely distort the outline for each pixel size. In other
words, you do not give a ‘smart’ rasterizer hints about ‘dumb’
outlines, as in PostScript. On the contrary, in TrueType, you
precisely instruct your outlines how to behave in different
sizes, and the ‘dumb’ rasterizer just puts these ‘smartened’
outlines across the pixel grid. In practice, TrueType rendering
results can still vary greatly between operating systems,
versions of the same operating system, as well as between
applications, and versions of the same application.
	 Instructioning improves the low-resolution rendering of
TrueType-based fonts, such as OpenType/TT fonts (usually
with a .ttf file name suffix), EOT webfonts (.eot), and TrueType-
based WOFFs (.woff and .woff2). Like in PostScript hinting,
the goal of the improved outline is not to preserve the glyph
shapes, but rather to adapt them to the pixel grid. This
can lead to immense outline distortions, especially in low
resolutions.
	 TrueType fonts employ quadratic splines, i.e., outlines with
different math for calculating curves, and a different path
direction. But in the user interface of Glyphs, you always work
in PostScript-style cubic splines. When you export to TTF,
the paths are converted to TrueType on the fly, including all
manually set instructions.

11.2	 AUTOHINT
Glyphs employs the open-source TTFAutohint by Werner
Lemberg for automatically adding TrueType instructions at
export time. You can set autohinting options for each exported
instance in File > Font Info > Instances (Cmd-I) by adding
the custom parameter ‘TTFAutohint options’. For a detailed
discussion of the available options, see its entry in the list of
custom parameters in the Appendix (p. 197).

11.2.1	 Either Manual or Automatic Instruction
Because of the far-reaching nature of the TrueType instruction
code inserted into the font, the different approaches of

For more info on TTFAutohint,
refer to the official website:

freetype.org/ttfautohint

http://freetype.org/ttfautohint

� Glyphs Handbook, July 2016   133

TTF Autohint and the TrueType Instructor tool (shortcut I) are
incompatible with each other. This means that you have to
choose: You can have either manual instructions or automatic
hints in an exported font, not both. Enabling TTF Autohint
will override any manually set instructions at export time.

11.3	 MANUAL INSTRUCTIONS
During rendering, pixels that fall inside the outline are on,
pixels outside are off. What instructions can do, is distort
the outline in a way that it produces a better low-resolution
picture when laid across the pixel grid. Thus, all instructions,
in one way or another, move outline nodes relative to the
underlying pixels.
	 Glyphs supports four kinds of TrueType instructions: Align,
Stem, Interpolation, and Diagonal. In order to insert these
instructions, you need to switch to the TrueType Instructor
tool (shortcut I), select a certain number of nodes, and
choose an instruction from the context menu. You can access
the context menu by either right-clicking or Ctrl-clicking
anywhere in the canvas.
	 No matter what the selection is, the context menu of the
Instructor tool always provides the two options Autohint
and Remove All Hints. Autohint attempts to guess which
instructions are appropriate for the current glyph and inserts
them. You achieve better results if stems and zones are set
properly. Remove All Hints deletes all instructions from the
current glyph. You can achieve the same effect by selecting
all instructions (Cmd-A) and deleting them by pressing the
Backspace or Delete key. A node that changes its position
because of an instruction is considered ‘touched’, while a yet
unmoved node is referred to as ‘untouched’.
	 In Multiple Master setups, only instructions in the first
master are considered, and, assuming the masters are
compatible, automatically applied to all interpolated instances.
	 You can keep your overlaps, and even hang instructions to
nodes inside an overlap, wherever necessary. When overlaps
are removed at export, the TrueType instruction in the overlap
is adapted as well, and moves to the resulting intersection
node, provided that the node is close to the intersection. This
means that, in order to make a hint work as expected in an
overlap, you may need to either move the touched nodes
closer to the intersection, or remove the overlap altogether.

This is contrary to PostScript
hints, in which some glyphs

can have manual hints while
other glyphs are autohinted.

� Glyphs Handbook, July 2016   134

	 When manually instructing glyphs, first focus on the
vertical alignments of the whole glyph, i.e., its baseline
alignment, the glyph height, etc. Then, take care of all
vertically measured features of your glyphs, like the
thicknesses of serifs and crossbars, and counter heights.
	 Ignore horizontally measured attributes, like vertical
stems, because these are already taken care of by modern
subpixel rendering methods like Microsoft’s ClearType. The
TrueType Instructor tool only applies horizontal hints, i.e.,
hints for vertically measured attributes described in the
previous paragraph.

11.3.1	 Horizontal Stems and Zones
The TrueType instructions reuse the alignment zones set in
File > Font Info > Masters > Alignment Zones and the standard
stems in File > Font Info > Masters > Horizontal Stems. See section
10.2, ‘Font-Wide Hints’ (p. 122) for details.
	 However, TrueType easily supports more stems than
PostScript. You can set separate horizontal TrueType stems
with the TTF Stems custom parameter in File > Font Info >
Masters > Custom Parameters. After adding the custom
parameter, access its options by clicking in its Value field.
Via the gear menu of the following dialog sheet, you can
import existing horizontal PostScript standard stems, define
additional stems, and give the stems descriptive names. In
Multiple Master setups, make sure that all masters contain
compatible TTF Stems parameters. That means that all
parameters need to have the exact same number, order and
naming of stems. You can copy and paste parameters between
the Custom Parameters fields of the individual masters in File >
Font Info > Masters.
	 Finding good standard stem values works very much like
finding good average values in PostScript hinting, except that
it is safe to add more stem values. You can even add stem
entries for horizontal stems that appear only rarely in the
font. That is because you can specifically apply a named stem
to a stem hint later. It is advisable to have well-differentiated
standard stems. I.e., only add an additional horizontal stem if
it is different enough from existing stems, because different
standard stems will cause diverging pixel thicknesses in some

� Glyphs Handbook, July 2016   135

font sizes. Only of this is acceptable for your design, you
should make the differentiation between two stems.

	

11.3.2	 Rasterizer Preview
While you edit a glyph with the TrueType Instruction tool,
you will see a red contour behind the glyph outline. This is a
precise preview of the instructed outline, which depends on
(a) the instructions you add to the glyph, (b) the font size, and
(c) which rendering intent is set. Three different rendering
intents are available for preview: Grayscale, GDI ClearType,
and DirectWrite. Additionally, Glyphs draws a pixel preview
of the currently selected instance in the background.
However, the pixel preview is only a vague reference. Actual
display renderings will vary in different applications and
environments.
	 Grayscale rendering applies four times horizontal and four
times vertical oversampling for each pixel. This means that
every pixel is subdivided into (4 × 4 =) 16 pixel parts. Depending
on how many of the centers of these subdivisions are
located within the instructed outline, one out of 16 grayscale
values will be used for drawing this pixel on the screen.
GDI ClearType, mainly used in Windows XP, applies 8 × 1
oversampling, i.e., 8 times horizontally, but no oversampling
vertically. DirectWrite, in use since Windows 7, makes use of
5  × 5 oversampling.
	 You will see a difference in outline snapping when you
switch between these modes. While the instructed outline can
snap to pixel fourths in Grayscale mode, and pixel fifths in
DirectWrite, it will only snap to full pixel heights in ClearType.
	 In the gray Info box (Cmd-Shift-I), you can use the drop-
down list to switch between the three rendering modes
Grayscale, ClearType and DirectWrite. In the size chooser next
to it, you can switch between point sizes in PPM.

Tip: To preview the instructed
outline and the pixel

rendering of other instances
than the current one, select

a different instance in the
Preview area at the bottom.

From left to right:
4 × 4 oversampling in Grayscale,
8 × 1 oversampling in ClearType,

5 × 5 oversampling in DirectWrite.

� Glyphs Handbook, July 2016   136

	 Windows assumes a screen resolution of 96 ppi. To calculate
the actual PPM sizes, divide the Windows point size by 3
and multiply it by 4, e.g., a Windows font size of 12 points
corresponds to 12 ÷ 3 × 4 = 16 pixels on the screen. Likewise, to
calculate the Windows point size, multiply the PPM size by 3
and divide by 4, e.g., a PPM size of 20 pixels corresponds to a
Windows point size of 20 × 3 ÷ 4 = 15 points.

11.3.3	 Anchor
To insert an Anchor instruction, select one node, preferably in
an alignment zone, right- or Ctrl-click to bring up the context
menu and choose Anchor, or press the shortcut A. The point
must not already be touched by another instruction, such as a
Stem or an Interpolation.
	 The Anchor instruction moves a node up or down to the
nearest pixel edge. Its direction is indicated by a small blue
triangle pointing up or down. To toggle the direction of the
Anchor, select it by clicking on its badge, and click on one of
the indicators which appear in the gray Info Box: round to
nearest edge (default option), round up, round down, or

 do not round.

	 ↕ ↕

 ↕

||

You do not need to anchor a node if it is going to be the origin
of a Stem or Align hint, because Glyphs will automatically
(and invisibly) insert an Anchor instruction on that node.

11.3.4	 Align
Select two nodes, then choose Align from the context menu to
insert an Align instruction, or press the keyboard shortcut F.
The Align instruction binds an (untouched) target node to a

Tip: The TT instructioning
shortcuts are the letter keys

A through G in the second
row of a U.S. keyboard. On

a French keyboard, for
instance, you would have

to press Q instead of A.

The shortcuts override the tool
shortcuts. This means that you
cannot access the Annotations
tool (default shortcut A) while

the TT Hinting Tool is active.

On the top serif and on both
bottom serifs, three Anchor

instructions are used to snap
the ends of all stems of this

lowercase n onto the pixel grid.

� Glyphs Handbook, July 2016   137

(touched) origin node, so that the target node reduplicates the
shift of the origin node.
	 If you apply an Align instruction on two untouched nodes,
the origin node will automatically (and invisibly) receive an
Anchor instruction. Typically, the node inside a zone will
become the origin. You can change the direction of the Align
instruction by selecting it and choosing Reverse from its
context menu.
	 Align instructions can be useful if you want to replicate the
shift caused by a stem hint in another node. E.g., you apply
a stem hint to a left serif, but want the node on the opposing
right serif to travel just as far. In that case, you select the
moved node of the left serif and the yet unmoved node of the
right serif, right-click and choose Align from the context menu.

11.3.5	 Stem
Select two, four or six nodes, and choose Stem from the context
menu to insert one, two or three stem hints. Alternatively,
you can press the keyboard shortcut S. The blue circle
represents the origin of the instruction, and the triangle
stands for the target. Glyphs will automatically insert an
invisible Anchor instruction on the origin node, unless it
is already targeted by another TrueType hint, such as an
Interpolate instruction.
	 Stems (a.k.a. ‘links’) control the vertical distance between
two nodes. The origin point of the stem will be snapped to the
nearest oversampling edge, or to the nearest pixel edge if the
point lies within a zone or has been anchored. You can round
the stem onto the pixel edges. To do that, select it by clicking
on the badge of the Stem, and click on one of the indicators
which appear in the gray Info box: round to nearest edge
(default option), round up, round down, or do not
round. The target point will be positioned in relation to the
origin point. The distance between the origin and target points
is linked to a horizontal stem value defined in the TTF Stems
parameter in File > Font Info > Masters > Custom Parameters.
For details, see its entry in the list of custom parameters in
the Appendix (p. 198). To change the stem the instruction
is linked to, select one or more Stem hints by (Shift) clicking
on their badges and choose a stem from the drop-down list
that appears in the gray Info Box. You can set it to No Stem to
reduplicate the shift of the source point in the target point.

Tip: Avoid rounding if you want
to profit from oversampling.

Since all rounding rounds
to full pixel edges, this

mainly makes sense for
rendering intents lacking

vertical oversampling, i.e., for
GDI ClearType on Windows XP.

� Glyphs Handbook, July 2016   138

Thus, a Stem hint with the No Stem setting is equivalent to an
Align instruction.

	

||

||

Right-click or Ctrl-click the Stem hint, and choose Reverse
from the context menu in order to change the direction of
the instruction. We recommend to put Stem instructions
from points in the alignment zones towards the center of the
glyph, as well as on crossbars as in A, H, or f. Serifs can also be
homogenised with Stem instructions.

	

|| ↕ || ↕

 ↕

If you place equal Stem instructions on both ends of a
crossbar, Glyphs will try to preserve angles of intersected
diagonals. In this case, the points will not just be moved up
or down, but in the direction of the surrounding diagonal

Two Stem hints have been
placed on the top and bottom of
the lowercase o. The lower Stem
hint is selected, and a TTF stem

is applied in the gray Info box.
That is why the lower stem

snaps to an oversampling edge
for the selected rendering intent.

In this uppercase A, two Stem
hints on both sides of the

crossbar preserve the diagonal
angles of the vertical stems.

� Glyphs Handbook, July 2016   139

segments. This can be useful, for instance, in an uppercase A
or an italic uppercase H.

11.3.6	 Triple Hint
Select three stem hints by subsequently Shift-clicking on their
badges, then right-click and choose Make Triple Hint from
the context menu. Triple hints will link the size of the stems
to each other, and reduce them if necessary, i.e., if there is
not enough vertical space to accommodate all three stems.
Thus the stems will be displayed with fewer pixels than the
TTF Stems parameter would indicate, but the counters are
preserved. This is useful in dense letters such as the lowercase
a and e, or the small cap B and E.

11.3.7	 Interpolate
Select three nodes, and choose Interpolate from the context
menu, or press the keyboard shortcut G, to insert an
interpolation instruction. Two of the nodes must be touched
by other instructions.
	 An Interpolate instruction will move a point relative to the
movement of two other, touched points. This way, you can
make sure that the relative positioning of the third node is
preserved when instructions are applied to the outline. This is
especially helpful for balancing counters and middle strokes,
as found in letters such as B, E, K, and R, or the crossbar of an
uppercase G:

	

 ↕

 ↕

} ↕

In this lowercase k, an
Interpolation hint determines
the node on the vertical stem

by interpolating the vertical
position from two touched
points: an aligned node on

the leg and an anchored
node at the end of the arm.

� Glyphs Handbook, July 2016   140

11.3.8	 Diagonal
Subpixel rendering in GDI ClearType allows verticals and
diagonals to grow by partial pixels, while horizontal widths
grow by full pixels. So, when scaling through a range of PPM
sizes, diagonals will appear too thick right before the full-pixel
increase of horizontals, and too thin right after a full-pixel
increase.
	 A Diagonal instruction tries to replicate the jumps in
thicknesses of a specified horizontal stem. Thus, the weight
relation between diagonals and horizontals can be preserved.
To apply a Diagonal instruction, select four nodes, and choose
Diagonal from the context menu, or press the keyboard
shortcut D. Link it to a horizontal stem width in the gray
Info Box.

	
 ↕

||||

 ↕

↕↕↕↕↕↕↕

 ↕

This is useful in all glyphs with prominent diagonals, such as
k, v, w, x, y, and z.

11.3.9	 Automatic Interpolation of Untouched Points
The position of remaining untouched nodes will be
interpolated between the positions of the touched nodes. This
automatic interpolation is applied after all instructions have
been executed, and the positions of all touched nodes have
been determined. This means that you can usually achieve
the desired outline distortion with placing a minimum of
instructions, first on vertical extremes, and then, if necessary,
working you way inward.

Two Diagonal hints are
used to normalize the two

stems of this lowercase v.

� Glyphs Handbook, July 2016   141

12	 Multiple Masters
12.1	 OVERVIEW

You can draw two or more extreme styles of a font family, so-
called ‘masters’, e.g., the Light and the Bold. If you keep them
in one single file, this is referred to as a Multiple Master setup.
Such a configuration allows you then to define ‘instances’ in
between, i.e., fonts calculated by the software. In other words,
you draw the masters, the input. And Glyphs outputs the
instances for you.

	 HeavyBoldSemiboldMediumRegularLightThin

Light Master
(Cmd-1)

Bold Master
(Cmd-2)

You can put two or more masters on one ‘interpolation axis’,
i.e., an imaginary line between the masters, along which
a style feature can be interpolated. The two most common
axes are Weight (i.e., from Light to Bold) and Width (i.e., from
Condensed to Extended), but you can interpolate any other
design feature as well, be it contrast, serif thickness, ascenders
and descenders, or whatever makes sense for the design
in question. Glyphs supports up to three axes: Weight and
Width are predefined, and a third custom axis, which you can
name yourself.
	 The relation between the masters is defined by their Width,
Weight, and custom values. Utilizing these values, the masters
span a design space inside of which the instances can be
placed. It is also possible to extrapolate, i.e., place instances
outside the design space. But in practice, extrapolation proves
to be very error-prone and thus not recommended, unless you
prepare your masters in a way fit for extrapolation.
	 Layers are independent. That means that the nodes,
handles, and anchors are not automatically in sync between
the masters. So you can insert nodes in one master while all

A small number of masters can
be used to interpolate a large

number of instances. In this
example, two masters on a
Weight axis (Light and Bold
Master) are interpolated to

produce seven font instances,
from Thin to Heavy.

Tip: It is advisable to keep
uprights and italics in

different files since their basic
shapes are too different to

linearly interpolate between
them. See section 12.6,

‘Ensuring Family Consistency
across Files’ (p. 148).

� Glyphs Handbook, July 2016   142

other masters stay untouched. Note that for the interpolation
to work, the masters need to be compatible. That means that
every node, handle, anchor, and component in one master
must correspond to the same structure of nodes, handles,
anchors and components in all other masters involved
in the interpolation. Incompatible masters will cause the
interpolation to fail, and will yield an empty glyph in the
exported font.

12.2	 SETTING UP MASTERS
Add masters in File > Font Info > Masters (Cmd-I), by clicking
on the plus button in the bottom left corner of the window.
For a detailed description of the options in this window, see
section 7.2, ‘Masters’ (p. 86). Defining the coordinates of the
masters sets up the design space. For the Weight coordinate,
we recommend using the stem width of a representative letter
such as the lowercase n. This makes it easier to define the
stem widths of the instances. The numeric Weight coordinate
is entered in the text entry field next to the pop-up, all the
way to the right:

	

Use the Weight pop-up to choose a master name. The names
are presets, and only influence the naming of the master
layers in the Palette, and the icon representing the master in
the toolbar of the main window. In other words, this setting is
not used for the style of the exported font (i.e., the instance).

� Glyphs Handbook, July 2016   143

The style names of the final fonts are defined in File > Font
Info > Instances.
	 If you need a second or third dimension for your
interpolation, you can add a Width setting and / or a Custom
third axis, where you can type your own name in the Custom
text field. The name of the master will be composed of the
names chosen for the Weight, the Width, and the Custom axis.
	 Keep an eye on the interpolation values in the number
fields on the right. Every master must have distinct values
there, otherwise interpolation of instances is not possible.
	 You can re-order masters by dragging their entries in
the sidebar into a new position. The order of the masters
does not affect interpolation, though the first master
does have significance for a number of other functions,
especially hinting, but also color and layered fonts.

12.3	 SETTING UP INSTANCES
Once you have defined the design space with the values of
the masters, you can pick instance positions relative to the
masters. If you keep instances between masters, you are
setting up an interpolation. Instances placed outside the
masters are extrapolated. You manage instances in File > Font
Info > Instances. For a detailed description of all options in the
window, refer to section 7.3, ‘Instances’ (p. 90).

	

� Glyphs Handbook, July 2016   144

Set a Style Name, and make sure it is unique for the font
family, otherwise fonts will be overwriting each other when
exported. Then, pick appropriate Weight, Width, and Custom
settings. The values correlate to the Weight, Width, and Custom
values of the masters you have set up. If you keep instances
between masters, you are setting up an interpolation.
Instances placed outside the masters are extrapolated.

12.4	 FIX OUTLINE INCOMPATIBILITY
When merging masters, Glyphs does not automatically fix
incompatible outlines. This has to be done manually. Letters
with incompatible outlines are marked with a pale red
triangle in the Font view and a red top stripe in Edit view.

	 D E F

During editing, it is possible to work with incompatible paths,
but for interpolation, they need to be compatible. Specifically,
this means that the order of the paths as well as number and
structure of nodes must correspond with each other.

	

View > Show Master Compatibility (Ctrl-Opt-Cmd-N) activates
a visualization of the masters’ congruency in Edit view. All
masters are displayed in an exploded view. Paths are colored
and numbered according to their order in the glyph layer.
Starting points of corresponding paths are connected with
solid lines in the color of their path. Corresponding anchors
are connected with colored dashed lines. If a path or an

In this example, the uppercase
E is marked as incompatible

in Font view. Note the pale
red triangle in the upper

left corner of its cell.

When active in Edit view,
an incompatible glyph is

marked with a pale red
stripe on top of the Ascender,

and across its width.

� Glyphs Handbook, July 2016   145

anchor is missing in a master, the solid or dashed line will
point to the origin point of that master. Selected nodes will be
connected to their corresponding nodes in other masters with
solid blue lines.

	

	

Components are displayed in a checkered pattern, colored
and numbered according to their order. And, if selected, they
are connected with a solid blue line from center to center. If
a component is missing in one master, the indicator line will
connect to the origin point.

	

The various outline segments are matched up against each
other and receive a subtle color overlay. Segments marked red
are technically incompatible, i.e., impossible to interpolate.
This usually means that a line segment is matched up
against a curve segment, which is not possible to interpolate.
Segments marked in green are technically compatible
without problems. Segments marked in yellow are technically
compatible, but their orientation changes between masters,

� Glyphs Handbook, July 2016   146

e.g. from straight to slanted, or from slanted to the left to
slanted to the right. Yellow markings can also be a false
alarm, especially if the rest of the outline is marked green.
Sometimes, however, this points to a badly placed start point,
resulting in a technically feasible, but unwanted interpolation.

	

All masters of your glyph that interpolate need to be
compatible in terms of paths, components, and anchors.
	 If your paths are not compatible, it is usually a good idea to
first run Paths > Correct Path Direction (Cmd-Shift-R) or, while
holding down the Option key, Paths > Correct Path Direction
for All Masters (Cmd-Opt-Shift-R). Glyphs will then try to
reorder the paths, reset the starting point, and fix the path
direction. If the node counts are not the same across master
layers, you can add nodes to the outline with the Draw tool
(shortcut P), or delete nodes by selecting them with the Select
tool (shortcut V), and subsequently pressing the Delete key.
	 You can rebuild compounds to their default recipe with
Glyph > Make Component Glyph (Cmd-Opt-Shift-C). If you are
employing a non-default component structure, you can simply
copy and paste components between layers. For more about
components, see section 8.1, ‘Components’ (p. 98).
	 To change the order of paths and components, use
Filter > Fix Compatibility, and rearrange the objects in the
subsequent dialog. For more details, see section 5.2.1, ‘Fix
Compatibility’ (p. 57). To set start points, Ctrl- or right-click
a node and choose Make Node First from the context menu.
	 Glyph > Set Anchors (Cmd-U) will add all missing default
anchors on the current layer. Holding down the Option key,
you can delete all existing anchors and set only the defaults
with Glyph > Reset Anchors (Cmd-Opt-U).

While the vertical stem on
the left interpolates just fine

and is therefore marked green,
the upper and middle serifs

are not in the same order
in both masters, resulting
in some segments marked

red and some yellow.

� Glyphs Handbook, July 2016   147

	 If you prefer a stacked view to the exploded view for View >
Master Compatibility (Ctrl-Opt-Cmd-N), try deactivating Master
Compatibility with Offset in Glyphs > Preferences > User Settings.
In that case, paths and components will not be colored
according to their order, but be numbered with red figures
next to their start points. This view makes it easier to compare
heights and overshoots.

	

12.5	 COMPARING MASTER LAYERS
The quickest way to look at different master layers is to switch
between them by either using the tool bar buttons or the
corresponding shortcuts, Cmd-1, Cmd-2, etc., i.e., the Command
key and the number of the respective master.

	

The Layers palette (Window > Palette, Cmd-Opt-P) shows all
layers of the selected glyph. The master layers are shown in
bold. When clicking an entry in the list of layers, the selected
layer is activated in the current glyph only. If multiple glyphs
are selected, you can still pick any of the (bold) master layers.
This is useful for comparing different masters for one or more
glyphs side by side.

	

� Glyphs Handbook, July 2016   148

If you want to see all master layers of the current glyph side
by side in Edit view, choose Edit > Show All Masters. This also
inserts Brace or Bracket layers, if present.
	 Using the visibility icon (the eye symbols) in the
Layers palette, you can have Glyphs display the paths and
components of the activated layers as gray outlines on top of
each other:

	

12.6	 ENSURING FAMILY CONSISTENCY ACROSS FILES
If you extend your font family beyond the scope of a single
Glyphs file, e.g., with italic styles, then make sure both files
carry precisely the same Family Name in File > Font Info > Font
(Cmd-I). Keep in mind that Font family names can be altered
for an instance with a custom parameter. Except for a Bold
Italic, italic styles always need to be style-linked with their
non-italic counterpart in the Instances tab. The Bold Italic
needs to be style-linked to the Regular. See section 7.3.4, ‘Style
Linking’ (p. 92), for more details.
	 To compare the glyph scope and glyph metrics of two or
more open Glyphs files, choose Edit > Compare Fonts. Glyphs
will then display a spreadsheet containing glyph counts,
an indication which glyphs are missing in which file, and a
per-glyph comparison of LSB, RSB, and width values for each
Master layer. If you want to add the missing glyphs to one of
the fonts, you can copy the names of the missing glyphs from
the spreadsheet, and paste them in the dialog of Glyph > Add
Glyphs (Cmd-Shift-G).

� Glyphs Handbook, July 2016   149

12.7	 BRACE LAYERS
If a layer name consists of, or ends with curly braces {…},
and the braces contain comma-separated number values,
representing coordinates in the Multiple Master design space,
it is treated as a so-called ‘Brace layer’. Paths, components, and
anchors on a Brace layer will act as an intermediate master for
the respective glyph only. The layer name can either contain
one value for a single-axis weight interpolation, two values,
representing weight and width interpolation values, or three
values for a three-axis setup. Brace layers can be useful for
fine-tuning the interpolation of horizontals in dense glyphs
such as e or s.

	

To quickly set up a Brace layer in a glyph, duplicate a master
layer by clicking on the Copy button in the Layers palette,
then rename it to, e.g., {100} for a single-axis setup, or {100,
90} or {100, 90, 80} for two- or three-axis setups, the numbers
representing the design space coordinates on the Weight,
Width and Custom axes. Make sure the layer is selected, then
choose Re-Interpolate from the gear menu in the Layers palette.
Now, adjust the outlines on the Brace layer. You can see the
effect of your changes immediately if the Preview area at the
bottom of the Edit view is set to Show All Instances.

12.8	 BRACKET LAYERS
If a layer name starts with the name of a Master, followed
by a space and brackets […] containing exactly one number
value, the layer is treated as a Bracket layer. Bracket layers
exchange the Master indicated by the name at or beyond
the interpolation value indicated between the brackets. E.g.,
‘Bold [130]’ will replace the Bold master with the contents of
the Bracket layer beyond a weight of 130. You can have any
number of Bracket layers, i.e., exchange any master as often
as you like. You can exchange both masters at the same time,

Top row: without Brace layer.
Bottom row: with Brace layer

in the middle. Note the growth
of the crossbar: linear in

the first half, proportionate
in the bolder weights.

� Glyphs Handbook, July 2016   150

e.g., with ‘Light [100]’ and ‘Bold [100]’. In a two-axis setup, you
can add an additional threshold value for the Width axis with
a comma, e.g., ‘Bold [100,300]’ will replace the Bold master
if both the weight value is beyond 100 and the width value
exceeds 300.
	 Bracket layers are an easy means of switching shapes for
glyphs that look substantially different between thin and bold
weights. A common usage example is the vertical bar that
crosses down through the dollar sign. In bolder variations of
the glyph, most designers choose to split it in two and reduce
it to whatever extends below and above the s-shaped part of
the sign. Keep the light variations as masters and put the bold
variants into the bracketed layers:

	$$$$$$$
Alternatvely, you can keep a separate, non-exporting dot
variant of the glyph, e.g., dollar and dollar.bold, and employ
the Rename Glyphs parameter in the bolder instances for
replacing the regular shape with the dot-suffixed glyph. Some
people prefer this method over Bracket layers because this
way, alternate masters are always visible in Font view.

12.9	 OPEN BRACKET LAYERS
An Open Bracket layer is a layer with a name of the structure
Mastername]weightvalue], i.e., the name of the master, followed
by a space, a right bracket, a weight interpolation value, and
another right bracket, e.g. ‘Bold]100]’. It acts very much like
a normal Bracket layer, except that the alternate master that
is being swapped in at the specified weight value, lies already
in the Master Layer, while the Open Bracket layer contains
the master that is active until that point. The advantage of an
Open Bracket layer is that you always see the correct master
in Font View.

� Glyphs Handbook, July 2016   151

13	 Color Fonts
Glyphs supports a streamlined workflow, preview and support
of four types of color fonts: classic layer fonts, Microsoft-style
fonts with CPAL and COLR OpenType tables, Apple-style fonts
with an sbix OpenType table, and Mozilla/Adobe-style fonts
with SVG tables. All of them have in common that you place
different content on multiple layers.

13.1	 WORKING ON MULTIPLE LAYERS

13.1.1	 Select All Layers Tool
For editing vectors on multiple layers at the same time, you
can pick the Select All Layers tool. It works much like the
Select tool, except that it is effective on all visible layers at
the same time. You can switch between the Select and Select
All Layers tools by clicking and holding the icon, then picking
the tool you want from the menu that pops up. Alternatively,
press Shift-V to toggle between the two selection tools.

13.1.2	 Keeping the Metrics in Sync
Since the shapes on the various layers need to keep their
positioning with respect to each other, both glyph widths and
kerning must be shared across all involved layers. To facilitate
this, you can add a custom parameter called Link Metrics
With First Master to File > Font Info > Masters. Subsequently, all
master and color layers will follow all metrics changes in the
first master.

13.1.3	 Exporting Color Fonts
All color fonts are regular OpenType fonts. They work in any
format Glyphs can export, be it OTF/CFF, TTF, WOFF, WOFF2,
or EOT. However, they will only work in environments that
allow their display. For instance, layered fonts will only
work in a software that can put pieces of text exactly on top
of each other, like most DTP software. This is very hard or
impossible to achieve in word processing apps such as TextEdit
or Microsoft Word.

� Glyphs Handbook, July 2016   152

13.2	 LAYERED COLOR FONTS
Layered color fonts are simply separate fonts that can be
stacked on top of each other. So, the software environment
in which the font is supposed to be used, must support the
stacking of text on top of each other.

13.2.1	 Named Masters with Master Colors
In order to draw on different levels, you need to add a master
for each level in File > Font Info > Masters. You can give them
custom names in the Custom field. Each custom-named master
must have a unique value in the number field next to the
name field. E.g., one master called ‘Front’ with value 1, and one
master called ‘Side’ with value 2.
	 To assign a preview color to a master, add the custom
parameter Master Color to the respective master. Set the color
with the color picker that appears after you click on the color
field in the parameter value. Keep in mind that the color is
only intended as preview color within Glyphs.

13.2.2	 Instances for All Masters
In order to set up individual font files for the respective color
layers, go to File > Font Info > Instances, then click on the plus
menu in the lower left of the menu, and pick Add Instance for
each Master from the menu that pops up. Glyphs will then add
instances that exactly match the masters you have set up in
File > Font Info > Masters.

13.2.3	 Previewing and Using Layered Color Fonts
You can switch between masters just as you would in any
other multiple master setup. To preview various masters at
the same time in Edit view, switch to the Text tool (T) or hold
down the space bar. All master layers that are set to show
in the Layers palette (Cmd-Opt-P) will be displayed in their
respective master colors as set in the custom parameters in
File > Font Info > Masters. For more info on toggling the display
state of a layer, see section 4.4, ‘Layers’ (p. 52).
	 Be prepared that the users of your layered font will
also want to use it in Adobe Illustrator. In this application,
the default baseline offset for the first line in a text box
is calculated as the height of the bounding box in the
lowercase d. In other words, the highest nodes in your
lowercase d will be aligned to the top edge of the text box.

� Glyphs Handbook, July 2016   153

Since it is unlikely that the color layers happen to have the
exact same height d, layered color fonts will appear misaligned
in Adobe Illustrator. In order to alleviate the problem, you
can either instruct your users to change the default setting in
Type > Area Type Options > Offset > First Baseline from Ascent to
Em Box Height or Fixed. Or, you can add a tiny closed path (e.g.
a one-unit square) to the top of the lowercase d in all color
masters.

	

layeredlayeredlayeredlayered
layeredlayeredlayeredlayered

13.3	 MICROSOFT COLOR FONTS
Microsoft-style color fonts are fonts that contain two
additional tables: CPAL (color palette) and COLR (color). The
CPAL table indexes an arbitrary set of colors, and the COLR
table describes which color index is applied to which outline.

13.3.1	 CPAL Table
In order to set up a color palette, go to File > Font Info > Masters
and add a custom parameter called Color Palette. Click in its
Value field to bring up a dialog sheet for setting a color palette.
The dialog displays one palette per column, and a color index
per row. The leftmost column shows the index number,
starting at zero.
	 In the dialog sheet, you can add new colors with the plus
button, and remove existing ones with the minus button. To
edit a color, click to select a color, and then click again on the
color field. Or, simply double click any displayed color field.
The system color picker will appear, allowing you to choose a
new color value for the color index in question.

Rendering of a layered color
font in Adobe Illustrator

with the default setting for
baseline offset (above) and set

to Em Box Height (below).

� Glyphs Handbook, July 2016   154

	 The gear menu allows you to add or remove additional
palettes. Additional palettes may make sense for color
variations, e.g., for a light and a dark background. However,
Glyphs will only preview the first palette for you, and at the
time of this writing, no software was known that was able to
access other palettes than the first one.
	 Once you are done, click OK to confirm the color choices,
and a palette is inserted into the font.

 

13.3.2	 Creating Color Layers
In order to apply the colors from the color palette, you can set
up any number of glyph layers that follow the naming scheme
‘Color<space><color index>’, e.g., ‘Color 2’ for the third color.
Once such a color layer is set up properly, a color marker will
appear next to the name, indicating the color. You can have
several layers sharing the same color. You can change a layer
to a different color either by renaming the layer accordingly, or
by clicking on the color marker, and choosing a different color
from the menu that pops up either by clicking on it with the

� Glyphs Handbook, July 2016   155

mouse pointer or by selecting it with the up and down arrow
keys and confirming your selection with the Return key.

13.4	 APPLE COLOR FONTS
Apple’s color fonts carry a table called sbix, which contains
bitmap data for various resolutions. The sbix table is
currently only supported in OS X versions 10.7 and later and
iOS. Some functionality requires at least OS X 10.9 or iOS 7.
Fonts containing an sbix table currently cannot be displayed
in Adobe applications or on Windows. More technical
information the sbix table can be found on:
 • � developer.apple.com/fonts/TrueType-Reference-Manual/

RM06/Chap6sbix.html

13.4.1	 Bitmap Image Files
Since Glyphs is not a binary image editor, you have to prepare
the pixel images with another application such as Preview,
Pixelmator or Photoshop. Also keep in mind that in the
Glyphs file, only the relative paths are stored. We therefore
recommend to keep all images in a folder next to the Glyphs
file. And when you move the file, always move the folder along
with it.
	 The following file formats are supported: PNG, JPEG, and
TIFF. PNG transparency is supported as well. The spec also
allows PDFs, but at the time of this writing, embedded PDFs
are not displayed in any software known to us.
	 You can prepare different images for different pixel sizes,
e.g., one for 24 pixels, one for 48 pixels, and one for 512 pixels.
The application displaying your font will pick the right size
variant for the font size in question. If you choose to have
different sizes, make sure that you prepare each of your
images for all intended sizes.

https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6sbix.html
https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6sbix.html

� Glyphs Handbook, July 2016   156

13.4.2	 Resolution Layers
In order to insert color bitmaps into your font, create
additional layers in your glyphs and name them according
to this naming scheme: ‘iColor<space><image size>’, e.g.,
‘iColor 48’ for the 48-pixel tall image, or ‘iColor 512’ for the
image with a height of 512 pixels. Once you have set up one
or more iColor layers, simply drag the images from the Finder
into the respective layers. Alternatively, you can select the
layer, choose Glyph > Add Image , and pick the respective image
file in the dialog sheet that appears.
	 Once the image is placed on the layer, the iColor layer is
finished. Neither position nor scale of the placed image matter.
So you can leave it at its placement next to the origin point of
the layer. When displayed, the image will be scaled to the pixel
size on screen, and moved vertically so that approximately 15%
of its height is below the baseline. The glyph will inherit its
width from the master layer. You can use the master layer for
a normal outlined drawing. It will usually be displayed on top
of the scaled bitmap image.
	 Make sure to keep the resolutions in sync across all
glyphs that employ sbix images. I.e., if you set up one glyph
with iColor 64, iColor 256, and iColor 512, then all other color
glyphs must have the same set of layers (and their respective
placed images).

13.4.3	 Using Apple Color Fonts
While an sbix table can be placed in any OpenType-based
font, its use on the web is currently limited to Safari on Mac
OS X 10.10 and later and font formats supported by it, i.e., OTF,
TTF, and WOFF. Previous versions of Safari will only display
the sbix color glyphs if they come from an OTF or TTF that is
installed on the user’s machine. Installed locally, it also works
in all apps using the Cocoa text engine, e.g., in TextEdit.

13.5	 SVG COLOR FONTS
SVG Color Fonts must not be confused with the SVG webfont
format (i.e., fonts with a ‘.svg’ or ‘.svgz’ file name suffix), which
is not supported by Glyphs. Rather, SVG Color Fonts are regular
OpenType fonts with embedded SVG graphics. This is done
through the means of an SVG table in the OpenType font file.
SVG Color Fonts were suggested by Mozilla as a standard for
color fonts and subsequently backed by Adobe. Therefore, they

You can read the spec
at w3.org/community/

svgopentype/

http://w3.org/community/svgopentype
http://w3.org/community/svgopentype

� Glyphs Handbook, July 2016   157

are also referred to as ‘SVG-in-OpenType’ or ‘Mozilla/Adobe-
style colorfonts’.
	 The feature that sets SVG Color Fonts apart from other
color font solutions is that it also allows the embedding of
animations. Currently, only Firefox versions 26 and later
support the display of SVG color fonts.

13.5.1	 SVG Image Files
Again, prepare SVG files outside of Glyphs. One pixel or
one point in the SVG will, by default, be scaled to one unit
in the font. To keep possible errors and the file size of the
resulting fonts at a minimum, we recommend to prepare the
SVG files at the right size. Make sure the total size does not
exceed the UPM of the font (1000 by default), or whatever
other measurement you want the graphics to stay in sync
with, e.g., the cap height of your font.

13.5.2	 SVG Layers
In the glyphs where you want to add SVG files, add a layer
called ‘svg’. Then, drag the SVG file from the Finder into the
‘svg’ layer, or add it via Glyph > Add Image  The image will be
displayed in its actual scaled size. You can move and scale
the SVG image by selecting it, and changing the respective
values in the gray Info box (View > Show Info, Cmd-Shift-I),
or by dragging the handles of the bounding box (View > Show
Bounding Box, Cmd-Opt-Shift-B). Merely moving the image is
possible by simply dragging it with the mouse, or selecting it
and using the arrow keys. Add the Shift key for increments of
10 units, and the Cmd key for increments of 100 units.

13.5.3	 Using SVG Color Fonts
Once you have one or more glyphs with ‘svg’ layers containing
placed SVG files in your Glyphs file, export an OpenType font,
preferably as WOFF or WOFF2 for use in Firefox. Glyphs will
add the SVG table containing the SVG code of the respective
image files. Transformed images will have a modified
‘transform’ attribute in their ‘svg’ tag.
	 Keep in mind that the in-line display of animated
SVGs is very processor-intensive, even if it is only a very
simple animation.

� Glyphs Handbook, July 2016   158

14	 Error Handling
14.1	 GLYPH NAMES

The most common source of problems when exporting fonts
are bad glyph names. Make sure all your glyph names
 • � only contain letters A-Z, a-z, numerals 0-9, underscore (_),

hyphen (-) or period (.),
 • � start with a letter (A-Z, a-z), except for ‘.notdef’, and

non-exporting glyphs, e.g., smart glyphs, that start with
an underscore,

 • � contain no whitespace characters (space, tab, return, etc.),
not even at the end,

 •  and contain no non-ASCII characters (like á, è, ß or ü).
Not adhering to these guidelines may yield an error message
at export time like ‘There is a problem with a glyph named:’,
followed by the bad glyph name and a descriptive explanation
of the problem within brackets, e.g., ‘The glyph name should
not contain any space character.’ Such error messages can also
occur when trying to compile the OpenType feature code in
File > Font Info > Features.
	 You can find bad names by searching for space (or other
invalid characters) in the search field of the Font view (Cmd-F).

	

14.2	 FONT NAMES
If your error message only entails a POSIX path to a file called
‘FontMenuNameDB’, set between brackets (e.g., ‘[/Users/<your
username>/Library/Application Support/Glyphs/Temp/<your
fontname>/FontMenuNameDB]’), then there probably is an
invalid character in the font name or style name. You can use
spaces, but no non-ASCII characters.
	 If you want to use non-ASCII characters in the font name,
then you need to assign a localizedFontName custom parameter
in File > Font Info > Font (Cmd-I). For more details, see its entry
in the list of custom parameters in the Appendix (p. 189). The

� Glyphs Handbook, July 2016   159

same applies to the style name of your font, which can have
non-ASCII characters in the parameter localizedStyleName.

14.3	 DUPLICATE UNICODE VALUES
In some fonts, two or more letters erroneously carry the
same Unicode. If you try to import such a font with double
encodings, Glyphs will warn you about it. Selecting all
glyphs and choosing Font > Update Glyph Info will usually fix
that problem.
	 In the reverse situation, where one glyph sports two
Unicodes, Glyphs will silently reset the Unicode value based
on the glyph name. The usual suspects for this are Delta and
Omega. Delta should only be U+0394, but sometimes also has
U+2206, the code for the mathematical increment operator
(a.k.a. Laplace operator, glyph name: increment). Omega,
which should only be encoded with U+03A9, sometimes also
sports U+2126, the codepoint for the Ohm symbol (glyph
name: Ohm).

14.4	 OPENTYPE FEATURE CODE
If all your features are auto-generated, you can usually fix
feature code troubles by re-compiling, i.e., clicking the Update
button in the Feature tab of the Font Info window.
	 Glyphs tries to pass on any FDK compilation errors in
an error dialog. And it also tries to point you to where the
problem occurred by reporting the name of the problematic
feature and the line number. If it succeeds in doing so, the
error dialog will sport a ‘Show’ button. Click on it and Glyphs
takes you directly to the code problem. The following errors
may occur:
	 Contextual substitution clause must have a replacement rule
or direct lookup reference. You probably forgot or mistyped the
word ‘by’ in a substitution feature.
	 DFLT script tag may be used only with the dlft language tag.
You tried using a language tag without a preceding script tag,
e.g., if you use ‘language DEU;’, there needs to be a ‘script latn;’
somewhere before in the feature.
	 “Feature” statement allowed only in ‘aalt’ feature. You most
likely added your own feature code in the Prefix and forgot to
close a feature properly before starting the next one.
	 Glyph x not in font. You tried referencing a glyph that does
not exist or is set to not export. The error message will tell

Tip: If you do want to keep
a glyph accessible via two

different codes, it is better
to create a duplicate glyph.

� Glyphs Handbook, July 2016   160

you which glyph it was looking for in vain. This happens if
you mistyped the name of the glyph, accidentally deleted the
actual glyph, renamed the glyph, had it removed with the
Remove Glyphs parameter, or forgot to create the glyph in the
first place. Sometimes, the automatically generated features
are simply out of date. In this case, recalculating the features
by clicking on the Update button in the bottom left corner of
File > Font Info > Features will do.
	 GPOS feature ‘kern’ causes overflow of offset to a subtable.
The kerning structure is too complicated and causes the
glyph positioning table in the font to become to0 large. An
OpenType table must not be larger than 64 kilobytes. Cleaning
up and compressing kerning may help: Try the respective
functions from the gear menu of the Kerning window
(Window > Kerning). Also check for unnecessary kerning
pairs. Very small values (below 5), and impossible pairs (like
Q and Tbar which do not both appear in the same written
language) are usually superfluous and can be deleted. Another
workaround is to use extended kerning by adding the Use
Extension Kerning parameter in File > Font Info > Font. For more
details, see its entry in the list of custom parameters in the
Appendix (p. 201).
	 Invalid token. Most likely one of the class names starts with
a whitespace character, or there is a whitespace between the
at sign (@) and the class name in the feature code, or there is
a whitespace character in a glyph name, or there are invalid
non-ASCII characters elsewhere in the feature code. Character
restrictions also apply to comments.
	 Lookup type different from previous rules in this lookup block.
You tried to mix contextual and non-contextual rules inside
the same lookup, most likely in the ‘calt’ feature.
	 MakeOTF error. GPOS feature '…' causes overflow of offset to a
subtable. The feature mentioned contains too many positioning
rules. If the feature is ‘kern’, you have too much kerning
information stored in your font. Consider setting up classes,
compressing kerning, removing some kerning exceptions, or
employing the Use Extension Kerning custom parameter.
	 MakeOTF error. GSUB feature '…' causes overflow of offset
to a subtable. The feature mentioned contains too many
substitution rules. Consider using lookups, removing some
substitutions or avoiding the repetition of substitutions in
more than one feature.

Unnecessary kerning between
two scripts (e.g., a Cyrillic and
a Latin letter with each other)

is ignored at export time,
minimizing the risk for this error.

� Glyphs Handbook, July 2016   161

	 makeotfGlyphs. The most probable cause is a glyph name
containing invalid characters. There usually is some extra
information in the dialog which should give you a clue.
	 makeotfGlyphs [FATAL] line too long. Most likely, a glyph
name was too long. The compiler cannot handle glyph names
longer than 122 characters.
	 not in range −32767 .. 32767 (text was “…”). At least one node or
anchor in the font is out of bounds. A coordinate value must
not exceed ± 32,767. Open the Glyphs file in a text editor and
search for the string ‘e+’. This way you can find large numbers
in exponential notation, e.g., ‘−9.22337e+18’ and see which
glyph needs to be fixed. If you do not find anything this way,
try the number in the brackets of the error message.
	 Positioning values are allowed only in the marked glyph
sequence, or after the final glyph node when only one glyph node
is marked. The syntax of a contextual positioning rule in the
‘kern’ feature is faulty. At least one glyph name must be
marked with a single dumb quote ('), and the number value
should come right after the marked glyph, not at the end as in
other positioning rules.
	 Premature end of input. Most likely, one of the glyphs has
a bad name. Check if there is a glyph name that contains an
equals sign (=), an at sign (@) or brackets (‘[’ or ‘]’).
	 Target glyph class in rule doesn’t have the same number of
elements as the replacement class. You tried substituting a class
with a class of a different size. The error dialog will point you
to the problematic code line. Make sure the classes are of the
same size and in the same order.
	 Syntax error. This message indicates that the code stored
in the OpenType features does not conform to the expected
AFDKO syntax. Potential causes include:
 •  non-ASCII characters in your code,
 • � one of the feature names does not adhere to the naming

rules: exactly 4 lowercase ASCII characters and figures, no
whitespace or punctuation,

 • � mistyped feature commands (like ‘sub’, ‘pos’, or ‘by’),
 • � a semicolon missing at the end of a rule (in this case, the

error message will contain ‘missing “;” ’),
 • � a numerical value missing or mistyped in a positioning

lookup (in this case, the error message may also contain
‘missing NUM’).

� Glyphs Handbook, July 2016   162

14.5	 MISSING OUTLINES
Sometimes the font does export, but some glyphs are empty
or parts of glyphs are missing.

14.5.1	 Open Paths
If the Remove Overlap option is active at export, outlines which
are not closed are ignored and will not show up in the final
font. So, if a glyph appears empty in the OTF, it is a good idea
to check if its paths are actually closed.
	 If you want to keep open paths, because you expand paths
into outlines at export time through the help of a custom
parameter, then uncheck the Remove Overlap option in the
File > Export (Cmd-E) dialog.

14.5.2	Wrong Path Orientation
Outlines must be oriented counter-clockwise, except for
counters, which need to be oriented clockwise. Otherwise,
counters may appear ‘closed’ or missing. You can fix the
orientation of selected outlines manually by choosing Reverse
Selected Contours from their context menu, or rotate all
outlines on a layer by invoking the context menu on an empty
selection and choosing Reverse All Contours. Glyphs will try
to apply heuristics to fix outline directions on any number
of selected glyphs with Glyph > Correct Path Direction (Cmd-
Shift-R) or Glyph > Correct Path Direction for All Masters (Cmd-
Opt-Shift-R).

14.5.3	Multiple Paths on Top of Each Other
Two similar paths on top of each other with varying path
orientations may delete each other at export. You can
select exactly one whole path by double clicking it. Press
the Backspace key to delete it. If it looks like nothing has
changed, then you had at least two identical outlines on top of
each other.

14.5.4	Outline Incompatibility
Incompatible outlines should not hinder OTF export. Affected
glyphs are simply exported empty. If you get a ‘Some glyphs
are not compatible and will have no outlines’ error message,
the font will still be exported. You can find more details
about fixing incompatible outlines in section 12.4, ‘Fix Outline
Incompatibility’ (p. 144).

� Glyphs Handbook, July 2016   163

15	 Import and Export
15.1	 VECTOR DRAWING APPLICATIONS

15.1.1	 Adobe Illustrator
First, find the right scale for your drawings in Adobe
Illustrator. One point in Illustrator corresponds to one unit
in Glyphs, i.e., an element that is 100 pt high will end up at a
height of 100 units in Glyphs. Alternatively, you can start in
Illustrator and set the artboard to a height of your UPM size
in points, e.g., 1000 pt if your UPM is 1000. Both ascender and
descender should fit inside the artboard. If you set the page
origin to the intersection of base line and LSB, the paths will
have the right position.
	 In Illustrator up to Version CS4, set the origin of the page
by dragging the cross hair in the top left corner between the
rulers. In Illustrator CS5 or later, set the origin of the page in
the Artboard Options.

15.1.2	 Sketch
If you are importing outlines from Sketch, set your contour
to 1 pt outline without fill. This will prevent double outlines
in Glyphs.

15.1.3	 Copy and Paste the Paths
Copy and paste the outlines. A dialog may appear, warning
you about inserting something far outside the bounds of the
letter. Pushing the Correct Bounds button will move the path
next to the origin, i.e., the intersection of base line and left
sidebearing.

	

Tip: To quickly get the right
scale, draw a rectangle with

the height of the capital letters
in Glyphs, copy and paste it
into an Illustrator artboard

and scale the drawings to fit
the height of the rectangle.

� Glyphs Handbook, July 2016   164

15.2	 FONTLAB STUDIO

15.2.1	 From FontLab Studio 5 to Glyphs
There is a FontLab macro available for exporting Glyphs files
directly out of FontLab Studio. Point your web browser to
github.com/schriftgestalt/Glyphs-Scripts/ and download the
script called ‘Glyphs Export.py’. To install, invoke Go > Go to
Folder in Finder, enter ~/Library/Application Support/FontLab/
Studio 5/Macros/ and place the file in the Macros folder that
is displayed then. After restarting FontLab, it will become
available in the macro toolbar.

15.2.2	 From Glyphs to FontLab Studio 5
Again, there is a Python script to import Glyphs files into
FontLab. You can get it from the same Github repository
mentioned above. This time, look for a script named ‘Glyphs
Import.py’ and place it in your FontLab Macros folder.
	 Keep in mind that some features are not available in
FontLab, and therefore the result may not be exactly the same.
For instance, FontLab Studio cannot nest components, and
therefore, the script will decompose them in the conversion.

15.3	 UNIFIED FONT OBJECT

15.3.1	 Native Saving Format
Glyphs can read and write UFO files natively. When you
choose File > Save As , you are prompted whether you want
to save a Glyphs file or a UFO. Not everything Glyphs can do
can be stored in a UFO. If you use UFO as your saving format,
Glyphs will warn you if you try to save something that is not
supported by UFO.

15.3.2	 Exporting to UFO
To be on the safe side, you can keep saving in the Glyphs file
format, and export to UFO when you need it by choosing File >
Export > UFO. If you try to export a Multiple Master file to UFO,
the masters will be exported as separate UFO files.

15.3.3	 Importing UFO Files
You can simply open a UFO file and save it in the native
Glyphs format with File > Save as. When importing a font
project, Glyphs will try to apply its built-in naming scheme

http://github.com/schriftgestalt/Glyphs-Scripts/
http://github.com/schriftgestalt/Glyphs-Scripts/

� Glyphs Handbook, July 2016   165

and sync the metrics of compound glyphs with their base
glyphs. To prevent either of the two, you can go to Glyphs >
Preferences > User Settings and check the options Keep Glyph
Names from Imported Files and Disable Automatic Alignment in
Imported Files. To set these options on a per-font basis, go to
File > Font Info > Other Settings, and check Use Custom Naming or
Disable Automatic Alignment, respectively.

15.4	 TYPE 1, OPENTYPE, AND TRUETYPE

15.4.1	 Opening Existing Fonts
While you can open existing PFB, OTF, TTC, and TTF fonts,
Glyphs cannot reverse-engineer all the information inside
a compiled font file. That means that opening an OTF and
exporting it again will produce a file that is different from the
original. For instance, you will lose hints and some of the font
metadata stored in OpenType tables. It is strongly advised to
always work on a copy.

15.4.2	Generating OpenType/CFF Fonts
Choosing File > Export (Cmd-E) will bring up the Export
dialog. To generate an OpenType font for use in layout or
word processing applications, pick OTF as export format.
For OpenType/CFF fonts, the Save as TTF option must be
left unchecked.

	

The Remove Overlap option applies an algorithm to remove
path overlaps at export, similar to the Remove Overlap filter.
In a release font, overlaps must be removed. So, uncheck

For more details on opening
existing fonts, see

glyphsapp.com/tutorials/
importing-existing-fonts

https://glyphsapp.com/tutorials/importing-existing-fonts
https://glyphsapp.com/tutorials/importing-existing-fonts

� Glyphs Handbook, July 2016   166

this only for testing purposes, to speed up the export. You
can safely uncheck this option if you have already removed
overlaps in the file or if a custom parameter takes care of the
overlap removal.
	 The Autohint option applies the AFDKO autohinting
algorithm to all glyphs that do not have any manually set
hints. This option expects standard stems and alignment
zones to be set correctly (see 10, ‘PostScript Hinting’, p. 121).
Uncheck this option for fonts that should not be hinted, or in
order to speed up export for testing purposes.
	 The Export Destination option allows you to set a default
location into which the fonts will get exported. If you do not
set a destination, Glyphs will bring up a save dialog. Be aware
that exporting your font will overwrite any previous instances
with the same name in the same export location. This can be
useful if you use the Adobe Fonts folder as export destination
(see 3.12.7, ‘Previewing in Adobe Applications’, p. 49).

15.4.3	Generating OpenType/TT Fonts
To export OpenType fonts in their TrueType flavor, choose
File > Export (Cmd-E) and click on the OTF tab of the upcoming
dialog. For exporting the font with TrueType outlines, the Save
as TTF option must be checked.
	 The Remove Overlap and Export Destination options work
just as with CFF-flavored fonts. See section 15.4.2, ‘Generating
OpenType/CFF Fonts’ (p. 165) for details.
	 The Autohint option applies the ttfautohint algorithm
by Werner Lemberg to all glyphs. It will override any
manually set TrueType hints. You can set options with the
custom parameter TTFAutohint Options. See its entry in the
list of custom parameters in the Appendix (p. 197) for a
complete description of what is possible. If, however, you
want to employ your own manual hinting (see 11.3, ‘Manual
Instructions’, p. 133), you must keep this option unchecked,
or insert the custom parameter Autohint with a disabled
checkbox in the instances where you want to keep manual
TT hints. See the respective entry in the list of custom
parameters in the Appendix (p. 180) for further details.
	 In exported TrueType fonts, compounds are kept in order
to reduce file size. Components are decomposed into outlines
only if they overlap, e.g., in glyphs such as Ccedilla, Lslash or
Tbar. In certain workflows, it can become necessary to keep

� Glyphs Handbook, July 2016   167

overlaps in these glyphs, while removing overlaps in paths.
This facilitates post-processing in other applications. In this
case, you can use the custom parameter Keep Overlapping
Components in the instances. Read more about it in its entry in
the list of custom parameters in the Appendix (p. 188).

15.5	 WEBFONTS

15.5.1	 Generating WOFF, WOFF2, EOT
To export OpenType fonts for the web, choose File >
Export (Cmd-E) and click on the Webfont tab of the upcoming
dialog. Glyphs can export WOFF and WOFF2 (Web Open Font
Format), as well as the TrueType-flavored EOT (Embedded
OpenType) for older versions of Internet Explorer.
	 With the checkboxes on the right, you can export all
instances in any or all of the available formats. The selection
can be overriden by the custom parameter Webfont Formats.
See its entry in the list of custom parameters in the
Appendix (p. 202) for further details.

	

The radio buttons OpenType/CFF and TrueType change the
OpenType flavor of exported WOFF and WOFF2 fonts. They
have no effect on exported EOT files, since they always contain
TrueType outlines.
	 The Autohint option triggers PostScript autohinting for CFF-
based WOFFs, and ttfautohint for TT-based WOFFs and EOTs.
This option is overriden by the Autohint custom parameter. For
more details, see its entry in the list of custom parameters in
the Appendix (p. 180).

� Glyphs Handbook, July 2016   168

	 The Export Destination setting works like it does for CFF-
based OpenType desktop fonts. See section 15.4.2, ‘Generating
OpenType/CFF Fonts’ (p. 165) for details.

15.6	 METRICS

15.6.1	 Import Metric Data
You can import kerning data for selected Glyphs via File >
Import > Metrics, then choosing an existing .glyphs, .metrics,
or .ufo file in the upcoming file dialog. In the Import Kerning
dialog that follows, you can import kerning values and
kerning groups (or ‘classes’) from a UFO, and from a Glyphs file,
only kerning groups. From a Metrics file, you can also choose
to import sidebearings or widths. The dialog adapts depending
on the file you selected for import:

	  

Please note that the glyphs need to be selected before you
import kerning groups and values for them. If you want to
import the data for the whole font, make sure all glyphs are
selected before running the command.
	 When importing metrics from a .metrics file, Glyphs
will disable automatic alignment for all compound glyphs
where the metric values deviate from the ones derived from
automatic alignment.
	 To import kerning values from another Glyphs file, or from
one font master to another, open the source file, switch to
the master from where you want to import the kerning, then
open Window > Kerning (Cmd-Opt-K), select the kerning values
you want to import, or select all (Cmd-A), and copy them
into the clipboard (Cmd-C). Then, switch to the font master
you want to import the kerning in (the target), and paste the

� Glyphs Handbook, July 2016   169

kerning data from your clipboard (Cmd-V). Glyphs will warn
you if you are overwriting existing kerning.

	

15.6.2	Export Metrics
If you want to export your sidebearing and kerning values,
you can run File > Export (Cmd-E) and pick the Metrics tab
in the dialog sheet that follows. Click on Next to choose an
export location. In the save file dialog that follows, you can
choose between Metrics File and AFM File.

	

The Metrics File option will create a proprietary file with a
.metrics suffix, containing all spacing and kerning information
of the font. You can then import the .metrics file into another
.glyphs file with File > Import > Metrics.
	 The AFM File option will save an old-style Adobe Font
Metrics file, which is compatible with other font editors,
but due to the constraints of the AFM file format, it cannot
contain all the metric information. For instance, AFM does not
support group kerning or metric keys.

15.7	 PROJECTS
Projects are collections of instance definitions linked to a
Glyphs font file, but kept in a separate project file. This is
useful for setting up different versions of your fonts without
altering or compromising the original .glyphs file. Project files
carry a .glyphsproject suffix.

� Glyphs Handbook, July 2016   170

15.7.1	 Setting up a Project
To create a new Glyphs project, select File > New Project. Save
it, like a regular Glyphs file, with either File > Save (Cmd-S) or
File > Save as (Cmd-Shift-S).
	 To link the project file to a Glyphs font file, click on the
Choose button in the top right of the project window. What
will be stored in the .glyphsproject file is the file path of
the Glyphs file. Once a font file is linked to the project, its
instances will be imported in the instances sidebar on the left.

	

You can rearrange instances by dragging and dropping.
You can duplicate existing instances by selecting them and
dragging them to a new location in the list with the Option
key held down. Alternatively, you can copy (Cmd-C) and paste
them (Cmd-V). You can add a new instance with the plus
button in the lower left, and delete selected instances with the
minus button next to it. You can reset the list of instances to
the setup stored in the .glyphs file with the refresh button.
You can edit the style name of the instance, as well as settings
for weight, width, style linking, design space coordinates, and
the Is Active export toggle through the gear menu.

	

Note that the font file does not
need to be opened in Glyphs for

linking it to the project. It only
needs to be saved on disk.

� Glyphs Handbook, July 2016   171

You can manage custom parameters of the currently selected
instance in the parameter list on the right. It works like the
Custom Parameters fields in the Instances tab of File > Font
Info (Cmd-I). See section 7.3.6, ‘Custom Parameters’ (p. 93) for
further details. For a list of available custom parameters, see
section 17.3, ‘Custom Parameters’ (p. 180).

15.8	 EXPORTING A PROJECT
To export all font instances of the project, first make sure you
have saved the .glyphsproject file, and that the path to the
.glyphs file is valid. Then, pick an export path by clicking on
the displayed path in the Export section at the bottom of the
project window. Once the export path is set, you can click on
the Export button in the bottom right corner of the window to
initiate the creation of all active font instances.

Note that also for exporting,
the original .glyphs file

does not need to be open
in the application.

� Glyphs Handbook, July 2016   172

16	 Extensions
16.1	 SCRIPTS

Python scripts are text files with a .py ending containing
code in the Python programming language. They can be used
to automate tasks in Glyphs. You can make Python scripts
accessible from inside the application if you put them into
the Scripts folder inside the Application Support folder of
Glyphs. The quickest way to get there is to choose Script >
Open Scripts Folder (Cmd-Shift-Y). You can arrange your scripts
in subfolders. After you have placed .py files there, you can
hold down the Option key and choose Script > Reload Scripts
(Cmd-Opt-Shift-Y). The scripts should then show up in the
Scripts menu. Python scripts for Glyphs should begin with a
comment that stipulates the script title that shows up in the
pull-down menu, e.g.:
	 #MenuTitle: Rotate Glyphs
Whatever is written into the __doc__ string will be shown as
the script’s tooltip when the mouse hovers over the script’s
menu entry in the Script menu:
	 __doc__="Create effect for selected glyphs."
There is extensive documentation of the Python Scripting API
available on the Glyphs website:
 •  docu.glyphsapp.com
For beginners, we provide a multipart introductory tutorial in
the Tutorials section of the Glyphs website:
 •  glyphsapp.com/tutorials/articles/tag:scripting
And you can find and study many third-party scripts
for Glyphs on GitHub. You will find links to some select
repositories on the Glyphs website as well:
 •  glyphsapp.com/extend

16.2	 PLUGINS

16.2.1	 Manual Plugin Installation
You install a plugin by opening it with Glyphs, e.g., by double
clicking it, or dragging it onto the app icon. The plugins are
then automatically moved into the Plugins folder inside the
Application Support folder of Glyphs. Alternatively, you can
move the plugin or an alias of the file there manually. You can
uninstall it again by moving it out of that folder. Quick ways
of accessing the Plugins folder are (1) choosing Script > Open

� Glyphs Handbook, July 2016   173

Scripts Folder and then clicking on the Plugins folder next to
the Scripts folder, or (2) opening Glyphs > Preferences > Addons >
Plugins, right-clicking on one of the installed Plugins and
choosing Show in Finder from the context menu.
	 There are various kinds of plugins that can be installed in
Glyphs. They can be differentiated with their file name suffix:
 •  �Reporter plugins (file name suffix .glyphsReporter) extend

the View menu with an additional Show option, and draw
on the canvas.

 • � Filter plugins (.glyphsFilter) process the selected glyphs.
Some have dialogs for options, some do not. Some can be
triggered by an instance custom parameter at export time.
Refer to the plugin documentation for details.

 •  �File Format plugins (.glyphsFileFormat) for an additional
format for opening or exporting.

 •  �Palettes (.glyphsPalette) provide extra functionality in the
Palette sidebar (Window > Palette, Cmd-Opt-P).

 • � Select Tool plugins (.glyphsTool) will show up as new tools in
the toolbar.

 • � General plugins (.glyphsPlugin) for other functionality, not
covered by the categories listed above.

You should be able to find some Glyphs plugins via the Extend
section of the Glyphs website:
 • � glyphsapp.com/extend

16.2.2	Plugin Manager
You can comfortably install a selection of freely available
plugins through Window > Plugin Manager. In the window that
appears, you can search for a plugin with the search box at
the top, read the descriptions, or click the provided links to

� Glyphs Handbook, July 2016   174

visit the website for the respective plugin. If the description
contains an image, you can click it to preview it at full size.

	

	 To install a plugin, click the green Install button next to the
plugin name. To uninstall, click the red Remove button. You
can click the Installed button at the top of the window to show
only installed plugins, for easier uninstallation. Click All to
show all, installed and uninstalled plugins again.
	 If you have written a plugin for Glyphs and want it to
appear in the Plugin Manager, you can make a pull request on
the plugin list. Details are described in the readme files of the
GlyphsSDK (see below).

16.3	 SDK
The GlyphsSDK is an open-sourced software development
kit (SDK) for Glyphs. Its purpose is to facilitate software
development for the Glyphs ecosystem, be it for plugins,
scripts, or for a standalone app that processes Glyphs data.
The SDK contains the documentation for the scripting API, a
description of the .glyphs file format, and templates for plugin
development, for both ObjectiveC in Xcode and Python via the
PyObjC bridge. Download the GlyphsSDK from GitHub at:
 •  github.com/schriftgestalt/GlyphsSDK

Since plugins are loaded
at startup time, you will

need to restart Glyphs
for changes to take

effect after installation
or uninstallation.

https://github.com/schriftgestalt/GlyphsSDK

� Glyphs Handbook, July 2016   175

17	 Appendix
17.1	 AUTOMATIC FEATURE GENERATION

Glyphs can automatically generate a number of OpenType
features if it finds glyphs with certain names in the font.

aalt All Alternatives Glyphs automatically builds the aalt feature
based on all features that substitute glyphs.

liga Ligature Join the glyph names of the components with
an underscore (‘_’). Some common ligatures
(f_f_i, f_f_l, f_f, fi, fl, lu_lakkhangyao-thai,
ru_lakkhangyao-thai) are automatically
placed in the liga feature, all others go into
dlig by default. However, if you want to force
a ligature into the liga feature, you can add a
‘.liga’ suffix to its name, e.g., f_b.liga or yi_yi-
cy.liga.

dlig Discretionary
Ligatures

Join the glyph names of the components with
an underscore (‘_’), e.g., f_odieresis.

hlig Historical
Ligatures

Ligatures with longs, or with a .hlig or .hist
suffix.

rlig Required
Ligatures

Add ‘.rlig’ to the ligature name. Also triggered
by lam_alef-ar, lam_alefHamzaabove-ar,
lam_alefHamzabelow-ar, lam_alefMadda-ar,
lam_alef-ar.fina, lam_alefHamzaabove-ar.fina,
lam_alefHamzabelow-ar.fina, lam_alefMadda-
ar.fina, lam_alefWasla-ar, lam_alefWasla-ar.
fina

c2sc Small Capitals
from Capitals

Add ‘.sc’, ‘.c2sc’ or ‘.smcp’ to the glyph name.

smcp Small Capitals Add ‘.sc’, ‘.c2sc’ or ‘.smcp’ to the glyph name.

c2pc Petite Capitals
from Capitals

Add ‘.pc’, ‘.c2pc’ or ‘.pcap’ to the glyph name.

pcap Petite Capitals Add ‘.pc’, ‘.c2pc’ or ‘.pcap’ to the glyph name.

sups Superscript Add ‘.sups’ to the glyph name. Or extend
figure names with ‘superior’, without the
period, e.g., ‘onesuperior’.

subs Subscript Add ‘inferior’ or ‘.subs’ to the glyph name.

sinf Scientific
Inferiors

Add ‘.sinf’ or ‘.subs’ to the glyph name.

If you have separate sets
for c2sc and smcp, you can

use ‘.c2sc’ for uppercase
glyph names and ‘.smcp’ for

lowercase glyph names.

If your font does not
differentiate between

subscript and scientific
inferior, simply use

one set of ‘.subs’ glyphs
and Glyphs will create
both features with it.

� Glyphs Handbook, July 2016   176

afrc Alternative
Fractions

Add figures, slash, and any of these nut
fraction glyphs to your font: oneovertwo,
zerooverthree, oneoverthree, twooverthree,
oneoverfour, threeoverfour, oneoverfive,
twooverfive, threeoverfive, fouroverfive,
oneoversix, fiveoversix, oneoverseven,
twooverseven, threeoverseven,
fouroverseven, fiveoverseven, sixoverseven,
oneovereight, threeovereight, fiveovereight,
sevenovereight, oneovernine, twoovernine,
fourovernine, fiveovernine, sevenovernine,
eightovernine, oneoverten, threeoverten,
sevenoverten, nineoverten, oneovereleven,
twoovereleven, threeovereleven,
fourovereleven, fiveovereleven, sixovereleven,
sevenovereleven, eightovereleven,
nineovereleven, tenovereleven,
oneovertwelve, fiveovertwelve,
sevenovertwelve, elevenovertwelve,
oneoveronehundred.

frac Fractions The frac feature is generated from the .numr,
.dnom and fraction glyphs. If they are not
present in the font, then the feature will
be composed from any pre-built fractions
available in the font, like onehalf, onequarter,
threequarters etc.

dnom Denominators Add ‘.dnom’ to the glyph name.

numr Numerators Add ‘.numr’ to the glyph name.

onum Oldstyle Figures Add ‘.osf’ (for proportional oldstyle figures)
or ‘.tosf’ (for tabular oldstyle figures) to
the glyph name. Can be applied to other
characters as well, e.g., currency signs.

tnum Tabular Figures Add ‘.tf ’ (for tabular figures) or ‘.tosf’ (for
tabular oldstyle figures) to the glyph name.
Can be applied to other characters as well,
e.g., currency signs.

pnum Proportional
Figures

Add ‘.osf’ (for proportional oldstyle figures)
or ‘.lf ’ (for proportional lining figures) to
the glyph name. Can be applied to other
characters as well, e.g., currency signs.

lnum Lining Figures Add ‘.lf ’ (for proportional lining figures) or ‘.tf ’
(for tabular figures) to the glyph name. Can
be applied to other characters as well, e.g.,
currency signs.

Tip: do not use the figure
suffix which would apply

to your default figures,
e.g., if your default figures

are proportional oldstyle
figures, do not use figures

with an .osf suffix.

� Glyphs Handbook, July 2016   177

ordn Ordinals Automatically built if default figures,
numero, ordfeminine and ordmasculine are
found in the font.

mgrk Mathematical
Greek

Next to Delta, Omega, Pi, Sigma,
alpha, mu, phi, epsilonLunateSymbol,
epsilonLunateReversedSymbol, also add:
increment, Ohm, product, summation,
proportional, micro, phiSymbol, element,
containsasmemberSmall. Since the feature
is considered deprecated, Glyphs will not
automatically add it, but only automatically
update it if you have added it manually.

ornm Ornaments Add ‘.ornm’ to the glyph name of letters A–Z
or a–z. Also make sure you have the glyph
‘bullet’ in your font.

hist Historical Forms Add ‘.hist’ to the glyph name.

case Uppercase
Forms

Add ‘.case’ to the glyph name or ‘.lf ’ to the
name of a figure.

cpsp Capital Spacing Add uppercase letters to your font, and
choose Capital Spacing from the plus menu
in the bottom left corner of File > Font Info >
Features (Cmd-I).

locl Localized Forms Add ‘.loclXXX’ to the glyph name, where XXX
represents the three letter language tag, e.g.,
‘.loclENG’ for English, or ‘.loclSVE’ for Swedish.
There also is a built-in list of glyphs which
which trigger localizations:
• � idotaccent, i.TRK or i.loclTRK: trigger

i substitutions for TRK, AZE, CRT, KAZ
and TAT if i is present.

• � Scommaccent, Tcommaaccent,
scommaaccent, and tcommaaccent: trigger
substitutions for ROM and MOL if Scedilla,
Tcedilla, scedilla, and tcedilla are present.

• � periodcentered.loclCAT (add a .case suffix
for uppercase; L_periodcentered_L.loclCAT,
l_periodcentered_l.loclCAT; or the legacy
Ldot, ldot: trigger ella geminada (punt
volat) substitutions for CAT if L, l, and
periodcentered are also present in the font.

• � Iacute_J.loclNLD and iacute_j.loclNLD,
or Jacute and jacute: trigger accented ij
substitutions for NLD if Iacute, iacute, J,
and j are present.

• � six-ar and numbers with .urdu suffix
(e.g. four-persian.urdu) will trigger URD
localization for Persian.

For a complete list of
language tags, see:

microsoft.com/typography/
otspec/languagetags.htm

Find out more about
these languages and

other localizations:
glyphsapp.com/tutorials/

tag/languages

http://www.microsoft.com/typography/otspec/languagetags.htm
http://www.microsoft.com/typography/otspec/languagetags.htm
http://www.glyphsapp.com/tutorials/tag/languages
http://www.glyphsapp.com/tutorials/tag/languages

� Glyphs Handbook, July 2016   178

cv01–
cv99

Character
Variants

Add ‘.cv01’ through ‘.cv99’ to the glyph name.

ss01 –
ss20

Stylistic Set Add ‘.ss01’ through ‘.ss20’ to the glyph name. If
you add ‘Name:’ plus the feature’s descriptive
name to the feature note at the bottom,
Glyphs will generate the feature name entries
for stylistic set names. Alternatively, you can
add the complete featureNames AFDKO code
to the note (see 7.4.3, ‘Manual Feature Code’,
p. 94).

salt Stylistic
Alternates

By default, Glyphs will duplicate the ss01
feature in salt. Adobe Illustrator and Adobe
Photoshop make use of this feature in their
OpenType palettes.

swsh Swashes Add ‘.swsh’ to the glyph name.

titl Titling Add ‘.titl’ to the glyph name.

init Initial Forms Add ‘.init’ to the glyph name.

medi Medial Forms Add ‘.medi’ to the glyph name.

med2 Medial Forms Add ‘.med2’ to the glyph name. Used only
with the Syriac script.

fina Terminal Forms Add ‘.fina’ to the glyph name.

fin2 Terminal Forms Add ‘.fin2’ to the glyph name. Used only with
the Syriac script.

fin3 Terminal Forms Add ‘.fin3’ to the glyph name. Used only with
the Syriac script

hwid Half Widths Add ‘.half’ to the glyph name.

vrt2 Vertical
Alternates and
Rotation

Add ‘.vert’ to the glyph name.

akhn Akhands Triggered by k-deva, j-deva, ssa-deva, nya-
deva and k_ssa-deva, j_nya-deva.

blwf Below Base
Forms

Triggered by ra-deva, halant-deva and
rashtrasign-deva.

cjct Conjunct Forms Triggered by conjunct clusters in Devanagari
and other Indic scripts.

half Half Forms Triggered by half-form glyphs ending in
‘Halfform’ in conjunction with halant in
Devanagari and other Indic scripts.

nukt Nukta Forms Triggered by nukta ligatures ending in ‘Nukta’
and the script abbreviation, in conjunction
with the same glyphs without nukta, in
Devanagari and other Indic scripts.

� Glyphs Handbook, July 2016   179

rkrf Rakar Forms Triggered by rakar ligatures in conjunction
with the isolated glyphs and halant, in
Devanagari and other Indic scripts.

rphf Reph Forms Triggered by ra-deva, halant-deva and reph-
deva, or an analogous glyph structure in
other Indic scripts

ccmp Glyph Compo
sition and De
composition

A wide range of glyph constellations in
various scripts will trigger automatic creation
of ccmp. E.g., idotless and jdotless next to i, j
and combining top marks, will trigger a ccmp
lookup for Latin, which replaces the dotted
with the dotless glyphs before top marks.

mark Mark to Base
Positioning

Add anchors without underscores to your
base letters, like ‘top’ or ‘bottom’. Then, add
combining marks (e.g., acutecomb) with
underscore anchors (e.g., ‘_top’ or ‘_bottom’ to
your font. Their width is automatically set to
zero at export. This GPOS feature is not added
to the Features tab, but calculated at export.

mkmk Mark to Mark
Positioning

Add combining marks (U+0300 and above)
with both underscore (e.g., ‘_top’) and non-
underscore anchors (e.g., ‘top’) to your font.
This GPOS feature is not added to the Features
tab, but calculated at export.

17.2	 AUTOMATIC CLASS GENERATION
Some OpenType classes can also be automatically generated,
or updated if present in the Font.

All All glyphs in the font. Must be manually added,
will be updated automatically if its Generate Feature
Automatically option is checked.

AllLetters All glyphs of category Letter present in the font.
Must be manually added, but can be updated
automatically.

ArabicLetters All glyphs of category ‘Letter’ and of the Arabic
script present in the font.

DevaHalfforms All Devanagari half forms present in the font.

� Glyphs Handbook, July 2016   180

Uppercase All glyphs of category ‘Letter’ and subcategory
‘Uppercase’. Generated when uppercase letters and
the cpsp feature are in the font.

17.3	 CUSTOM PARAMETERS
Custom parameters have a property and a value. In this
appendix, the properties are printed in bold. The short
description next to it explains the respective values and the
function of the parameter.
	 In the Custom Parameters field of the Font, Masters and
Instances tabs of File > Font Info (Cmd-I), enabled parameters
are displayed in black, disabled parameters are displayed in
gray. You can quickly disable a parameter by changing its
property name, e.g., adding an x to the beginning.
	 Custom parameters in camelcase are defined in the
UFO specification, and change a font information, while
capitalized ones are specific to Glyphs and usually change
something in the font, e.g., run a filter on the outlines. UFO
parameters follow the naming convention for Font Info
properties as set forth in the UFO 3 specification published
in March 2012. Glyphs also makes use of a simplified naming
convention. Wherever possible, you can leave out the prefix
of the keyword, e.g., instead of openTypeNameDescription,
you can simply use description, or blueScale instead of
postscriptBlueScale. Both long and short versions work side by
side, though.

Autohint  boolean  Forces autohinting for the given instance, regard-
less of the setting in the Export dialog

blueScale  float  BlueScale value. This corresponds to the Type 1/CFF
BlueScale field. Controls the font size until which overshoot
display is suppressed. Calculated as (pointsize at
300 dpi – 0.49) ÷ 240, e.g., 0.039625 for 10 points at 300 dpi. If
you do not set the value yourself, blueScale defaults to 0.037,
which corresponds to 9.37 points at 300 dpi or 39 pixels per
em. This means that, in this case, overshoots will be visible if
at least 40 pixels are used to display an em. The maximum
blueScale value depends on the sizes of your alignment zones.
The maximum pointsize at 300 dpi is calculated as
0.49 + 240 ÷ largest alignment zone size, which corresponds to
a PPM (size in pixels per em) of 2.04 + 1000 ÷ largest alignment
zone size. The product of (maximum pointsize – 0.49) × (largest
alignment zone height) must be less than 240.

All quotes in this chapter
are taken from the

Microsoft OpenType
specification at microsoft.
com/typography/otspec/
unless stated otherwise.

UFO3 Font Info properties
are described on

unifiedfontobject.org/
versions/ufo3/fontinfo.html

http://microsoft.com/typography/otspec/
http://microsoft.com/typography/otspec/
http://unifiedfontobject.org/versions/ufo3/fontinfo.html
http://unifiedfontobject.org/versions/ufo3/fontinfo.html

� Glyphs Handbook, July 2016   181

	 For example, your largest zone is 21 units deep, thus:
2.04 + 1000 ÷ 21 = 49.659, so the maximum PPM at which
overshoots can be suppressed is 49. The corresponding maxi-
mum pointsize is 0.49 + 240 ÷ 21 = 11.919 points at 300 dpi,
thus the blueScale value cannot exceed (11.919 – 0.49) ÷ 240 = 
0.04762.

blueShift  integer or float  BlueShift value. This corresponds to the
Type 1/CFF BlueShift field. Default value is 7. Extends for very
small glyph features beyond the font size indicated by blueS-
cale. Overshoots inside an alignment zone are displayed if: (a)
they are equal to or larger than BlueShift and (b) if they are
smaller than BlueShift but larger than half a pixel. E.g. blueS-
cale is set to suppress overshoots until 32 PPM, blueShift is 6,
overshoots are 12 units deep. The stroke endings are slightly
slanted and extend 5 units below the baseline. Between 0 and
32 PPM, the baseline will be kept completely level. Starting at
33 PPM, the overshoots will kick in. But the stroke endings
will stay flat, because 5 units do not cover half a pixel until
100 PPM.

CJK Grid  integer  Number of rows and columns of a dotted-line grid
displayed when editing CJK glyphs. You can set number of
rows and columns separately with the CJK Grid Horizontal and
CJK Grid Vertical parameters. No grid is displayed when none
of these parameters are set. This parameter can be localized
like the CJK Guide parameter.

CJK Grid Horizontal  integer  Number of columns of a dotted-line
grid displayed when editing CJK glyphs. This parameter can
be localized like the CJK Guide parameter.

CJK Grid Vertical  integer  Number of rows of a dotted-line grid
displayed when editing CJK glyphs. This parameter can be
localized like the CJK Guide parameter.

CJK Guide  float or string  Percentage of inset for CJK guide squares,
e.g., 10 for 10 percent. If set, Glyphs will display a second
square guide for the virtual body in CJK glyphs. You can
localize the parameter by preceding the value with the script
name, e.g., ‘kana:5’. If you want to define virtual bodies for
more than one script, add more CJK Guide parameters.

codePageRanges  list  Sets the appropriate bits of the ulCodePage
Range1 and ulCodePageRange2 entries in the OS/2 table. ‘This
field is used to specify the code pages encompassed by the
font file in the cmap subtable for platform 3, encoding ID 1
(Microsoft platform).’ Every activated ‘code page is considered

� Glyphs Handbook, July 2016   182

functional. Each of the bits is treated as an independent flag
and the bits can be set in any combination. The determina-
tion of “functional” is left up to the font designer, although
character set selection should attempt to be functional by
code pages if at all possible.’

Color Palette  color palette  Exports a CPAL OpenType table for
Microsoft-style color fonts (see 13.3, ‘Microsoft Color Fonts’,
p. 153). This parameter allows Glyphs to display a preview of
color glyphs in Font view.

compatibleFullName  string  Compatible full name (Mac only).
Corresponds to the OpenType name table name ID 18. If not
set, the value for name table ID 18 is calculated from Family
Name plus space plus Style Name of the respective instance.
‘On the Macintosh, the menu name is constructed using the
FOND resource. This usually matches the Full Name. If you
want the name of the font to appear differently than the Full
Name, you can insert the Compatible Full Name in ID 18.’

Compatible Name Table  boolean  Exports a legacy name table as
expected by some Mac apps (e.g., Quark XPress, FontExplorer).

copyright  string  Copyright statement. Overrides the entry in the
Copyright field in the Font tab of the Font Info. Corresponds to
the OpenType name table name ID 0.

Decompose glyphs  list  Decomposes the compound glyphs listed.
This can be useful if you want to avoid changing of com-
pounds when one of the components is being changed with
the Rename Glyphs parameter.

description  string  Description of the font. Corresponds to the
OpenType name table name ID 10: ‘description of the type-
face. Can contain revision information, usage recommenda-
tions, history, features, etc.’

DisableAllAutomaticBehaviour  boolean  If checked, all automa-
tisms at export are switched off. This includes the zeroing of
nonspacing glyph widths, automatic recalculation of
OpenType features, and the renaming of glyphs into their
production names. Makes most sense at the Font level. Should
only be employed if very specific production requirements
dictate its use.

Disable autohinting for glyphs  list  Excludes listed glyphs from the
PostScript autohinting at export time. (TT autohinting cannot
be disabled on a per-glyph basis.) This can be useful if some
glyphs do not lend themselves for hinting, e.g., ornaments.

� Glyphs Handbook, July 2016   183

Disable Last Change  boolean  Prevents the Last Changed Date from
being written into the .glyphs file. This can facilitate
version control.

Disable Masters  list  Disables all masters with the specified names.
Intended mainly for specific production workflows, or for
testing purposes, to see if interpolation still behaves as ex-
pected if you leave out one of the intermediate masters.

Disable Subroutines  boolean  If set, CFF outline subroutinization is
disabled when the font is exported. Use this (a) when the font
has complex outlines with many nodes and does not export
at all, or (b) for testing purposes when the font has many
glyphs, e.g., a CJK font, and takes too long to compile every
time you export.

Don’t use Production Names  boolean  If checked, Glyphs will not
automatically rename glyphs of the final font file according to
the internal glyph database, but export the current glyph
names. Some applications and systems, amongst which the
text engine of OS X 10.4, expect the AGL naming scheme,
though. This is eqivalent to the File > Font Info > Other
Settings > Use Custom Naming setting, and intended for users
who want to employ their own custom naming scheme.

EditView Line Height  integer  Sets the line height for text set in an
Edit tab. Useful if you have unusual vertical metrics, and the
default leading seems inappropriate. Has no effect on the
exported font file.

Export Glyphs  list  Exports all glyphs listed, regardless of whether
the glyph was set to export or not.

Export Path  string  A POSIX-style path to a folder into which the
files are going to be exported.

Family Alignment Zones  list  This parameter can help create a
more consistent screen appearance at low resolutions, even if
the overshoots differ in the individual weights. It is a good
idea to reduplicate the alignment zones of the most impor-
tant font in your family, usually of the Regular or Book
instance. A rasterizer will then try to align all weights if the
height difference between the individual weight and the
family alignment is less than one pixel. Important: For this
mechanism to work, family alignment zones must be com-

� Glyphs Handbook, July 2016   184

patible with the alignment zones set up in the masters.

familyName  string  Family name. Overrides the entry in the Family
Name field in the Font section of the Font Info (see 7.1.1,
‘Family Name’, p. 84). Corresponds to the OpenType name
table name IDs 1 and 4. Used to calculate IDs 3, 4 and 6.

fileName  string  Name for the font file, without the dot suffix, i.e.,
without ‘.otf’, etc. Gives you the chance to export two versions
of the same font style name without the second file overwrit-
ing the first one.

Filter  string  Triggers Glyphs filters or app functions in an instance,
after decomposition of compound glyphs. The values for the
default filters are as follows:
 •  AddExtremes
 •  HatchOutlineFilter; OriginX:<x>; OriginY:<y>;
StepWidth:<distance>; Angle:<angle>; Offset:<thickness>
 •  OffsetCurve; <x>; <y>; <make stroke>; <position/auto>
 •  RemoveOverlap
 •  Roughenizer; <segment length>; <x>; <y>; <angle>
 •  RoundCorner; <radius>; <visual correction>
 •  RoundedFont; <stem>
 •  Transformations; LSB:<±*/‌shift>; RSB:<±*/shift>;
Width:<±shift>; ScaleX:<percent>; ScaleY:<percent>;
Slant:<amount>; SlantCorrection:<bool>; OffsetX:<amount>;
OffsetY:<amount>; Origin:<select>
	 The boolean values (<make stroke>, <visual correction>,
<bool>) are 1 for yes and 0 for no. The value for <position/
auto> must be a floating point number where 0.0 represents
0%, and 1.0 stands for 100%, or the string ‘auto’ for Auto
Stroke. The <stem> value in the RoundedFont parameter is
optional. The <select> value in the Transformations param-
eter can be a number from 0 to 4, representing the five op-
tions in Filter > Transformations > Transform > Origin: cap
height (0), half cap height (1), x-height (2), half x-height (3),
baseline (4). If you want a filter to be applied only to some
glyphs, add ‘include:’ or ‘exclude:’, followed by space- or
comma-separated glyph names, e.g., ‘RemoveOverlap;
exclude:a,b,c’.

Above: without family alignment.

Below: with family alignment.

Tip: When applying the
Round Corner parameter,

use negative values for
<radius> to round inside

(i.e., white) corners.

� Glyphs Handbook, July 2016   185

	 If you are using third-party filters, refer to their docu-
mentation for the parameter string. In particular, the include
and exclude options may not be available.
	 If you want to apply filters before decomposition, use
these values with the PreFilter property, see its entry in the
list of custom parameters in the Appendix (p. 193).

fsType  list  A list of bit numbers indicating the embedding type. The
bit numbers are listed in the OpenType OS/2 specification.
Corresponds to the OpenType OS/2 table fsType field. ‘Type
flags. Indicates font embedding licensing rights for the font.
Embeddable fonts may be stored in a document. When a
document with embedded fonts is opened on a system that
does not have the font installed (the remote system), the
embedded font may be loaded for temporary (and in some
cases, permanent) use on that system by an embedding-
aware application. Embedding licensing rights are granted by
the vendor of the font.
	 The OpenType Font Embedding DLL Specification and DLL
release notes describe the APIs used to implement support for
OpenType font embedding and loading. Applications that
implement support for font embedding, either through use of
the Font Embedding DLL or through other means, must not
embed fonts which are not licensed to permit embedding.
Further, applications loading embedded fonts for temporary
use (see Preview & Print and Editable embedding below) must
delete the fonts when the document containing the embed-
ded font is closed.’ You can set fsType to one of these
five states:
 •  Not set: ‘Fonts with this setting indicate that they may be
embedded and permanently installed on the remote system
by an application. The user of the remote system acquires the
identical rights, obligations and licenses for that font as the
original purchaser of the font, and is subject to the same
end-user license agreement, copyright, design patent, and/or
trademark as was the original purchaser.’
 •  Forbidden: ‘Restricted License embedding: Fonts that have
only this bit set must not be modified, embedded or ex-
changed in any manner without first obtaining permission of
the legal owner. Caution: For Restricted License embedding to
take effect, it must be the only level of embedding selected.’
 •  Editable: ‘When this bit is set, the font may be embedded
but must only be installed temporarily on other systems. In

Please note that the embedding
type is really just a usage

suggestion for an application,
not an actual protection

mechanism. An application
may ignore the fsType setting.

� Glyphs Handbook, July 2016   186

contrast to Preview & Print fonts, documents containing
Editable fonts may be opened for reading, editing is permit-
ted, and changes may be saved.’
 •  Preview & Print: ‘When this bit is set, the font may be
embedded, and temporarily loaded on the remote system.
Documents containing Preview & Print fonts must be opened
“read-only;” no edits can be applied to the document.’
 •  Subsetting forbidden: ‘When this bit is set, the font may not
be subsetted prior to embedding. Other embedding restric-
tions also apply.’

GASP Table  settings  Sets the gasp table (‘grid-fitting and scan-
conversion procedure’) for TrueType fonts. It controls the two
PPM thresholds at which the recommended on-screen render-
ing behavior changes. The gasp table contains rendering
recommendations for both a traditional grayscale and a
ClearType subpixel renderer. However, keep in mind that a
renderer may ignore the data stored herein. ‘This table con-
tains information which describes the preferred rasterization
techniques for the typeface when it is rendered on grayscale-
capable devices. This table also has some use for monochrome
devices, which may use the table to turn off hinting at very
large or small sizes, to improve performance.’ The default
threshold sizes are 8 and 20 PPM. Because there are two
thresholds, three ranges can be differentiated:
 •  no hinting & symmetric: Until the first threshold size, no
gridfitting is applied, and text is rendered with antialiasing
wherever possible. ‘At very small sizes, the best appearance
on grayscale devices can usually be achieved by rendering the
glyphs in grayscale without using hints.’
 •  hinting & asymmetric: Between the two threshold sizes, the
renderer is recommended to apply gridfitting and suppress
grayscale. ‘At intermediate sizes, hinting and monochrome
rendering will usually produce the best appearance.’ In
ClearType, the matter is handled asymmetrically, i.e., vertical
gridfitting is applied, while horizontally, subpixel rendering
is used.
 •  hinting & symmetric: Beyond the thresholds, the rasterizer is
instructed to apply gridfitting and render the shapes in
grayscale. ‘At large sizes, the combination of hinting and
grayscale rendering will typically produce the best appear-
ance.’ The ClearType rasterizer is instructed to apply symmet-
ric smoothing, i.e., to use anti-aliasing in y direction in

� Glyphs Handbook, July 2016   187

addition to horizontal subpixel rendering. ‘At display sizes on
screen, […] this new improvement of the Windows font
renderer produces smoother and cleaner-looking type’ (Now
Read this: The Microsoft Cleartype Font Collection,
Microsoft 2004, p. 14).

glyphOrder  string  Sets the order of glyphs in both the working file
and the final font. Glyph names need to be separated by
newlines. You can copy and paste the content of a List Filter.
Glyphs not listed but still in the font will be appended after
listed glyphs, in the default order that Glyphs employs.

Grid Spacing  float  Set the coordinate precision for the resulting
font, in font units. The value corresponds to the quotient of
the Grid Spacing value divided by the Subdivision value in
File > Font Info > Other Settings (see 7.5.1, ‘Grid Spacing and
Subdivision’, p. 96). Use 0.0 for maximum precision in
interpolated or expanded instances, or 0.01 for a grid with a
coordinate precision a hundred times finer than the default
unit. Its main purpose is to avoid the rounding of point
coordinates in very thin interpolations.

Has WWS Names  boolean  Sets bit 8 of the fsSelection entry in the
OS/2 table: According to the OpenType specification, this bit
indicates that ‘the font has “name” table strings consistent
with a weight/width/slope family without requiring use of
“name” IDs 21 and 22.’ This makes sense only if the naming of
your font already adheres to the WWS scheme.

hheaAscender  integer  Height of the ascender as stored in the hhea
(horizontal header) table. ‘Typographic ascent (distance from
baseline of highest ascender).’

hheaDescender  integer  Depth of the descender as stored in the hhea
table, represented as a negative number. ‘Typographic descent
(distance from baseline of lowest descender).’

hheaLineGap  integer  The recommended interlinear whitespace as
stored in the hhea table. ‘Typographic line gap.’

Instance Preview  list  Changes the preview string of an instance in
File > Font Info > Instances from the default ‘Aang126’ to the
glyph names listed. Especially useful if you are designing a
non-Latin typeface.

InterpolationWeightY  integer  Vertical interpolation value. In an
instance, you can differentiate between interpolation along
the x axis and interpolation along the y axis by introducing
this custom parameter. For it to take effect, it must differ
from the interpolation weight of the instance. Be careful, as

� Glyphs Handbook, July 2016   188

this can lead to deformation in diagonals. We advice to keep
the InterpolationWeightY close to the normal Weight interpo-
lation value.
	 E.g., there are two masters at weight 20 and 100, and an
instance with a weight interpolation value of 50. But the
horizontals look too thin. They would look right at 60, but
then the verticals are too thick. So, you keep your instance
at 50, but add the custom parameter InterpolationWeightY
with a value of 60. Now, the vertical stems (x coordinates) are
still interpolated with 50, and the horizontals (y coordinates)
with 60.

isFixedPitch  boolean  Sets the isFixedPitch flag in the post table.
Indicates whether the font is monospaced. Software can use
this information to make sure that all glyphs are rendered
with the same amount of pixels horizontally at any given
PPM size.

italicAngle  integer or float  Italic angle. This must be an angle in
clockwise degrees from the vertical. Overrides the entry in
the Italic Angle field in the Masters tab of the Font Info.
Useful for upright fonts with an angle other than 0°, because
OS X interpretes non-zero angles as italic. Affects the CFF
ItalicAngle, the post italicAngle, the x offsets of the OS/2
subscript and superscript values, as well as the hhea caretSlo-
peRise and caretSlopeRun entries.

Keep Glyphs  list  List of glyphs that will be kept in the exported
font. All other glyphs will be discarded, and kerning and
automatic feature code will be updated accordingly. Works as
the opposite of the Remove Glyphs parameter, useful for
webfont subsetting in order to achieve smaller file sizes.
Remove Glyphs and Keep Glyphs are mutually exclusive.

Keep Overlapping Components  boolean  Does not decompose
compound glyphs with overlapping components, such as in
Ccedilla. Useful for post-production of TrueType fonts.

license  string  License description. Corresponds to the OpenType
name table name ID 13, the ‘description of how the font may
be legally used, or different example scenarios for licensed
use. This field should be written in plain language,
not legalese.’

licenseURL  string  URL for the license. Corresponds to the OpenType
name table name ID 14. ‘URL where additional licensing
information can be found.’ Make sure it starts with the
protocol specification, typically ‘http://’.

In the CFF and post tables,
the italic angle is stored as

counter-clockwise from the
vertical. Glyphs will convert

your value accordingly.

� Glyphs Handbook, July 2016   189

Link Metrics With First Master  boolean  If checked, keeps the
sidebearings and the kerning of all masters and color layers
in sync with the first master. In effect, you only have to space
and kern the first master. This is especially useful for color
fonts or fonts that should not change their metrics through-
out their weights.

Local Interpolation  string  Apply different interpolation values for
specified glyphs. The string must be of the format ‘<weight>;
<width>; <custom>; include: <comma-separated glyph
names>’, i.e., start with a list of semicolon-separated interpo-
lation values, followed by another semicolon, the string
‘include:’, followed by a comma-separated list of glyph names.
For a single-axis setup, a single interpolation value suffices.
E.g., ‘120; include: a, g, s’ uses Weight interpolation value 120
just for the glyphs a, g and s, while all other glyphs are
interpolated according to the interpolation settings of the
respective instance.

localizedDesigner  string  Allows a language specific designer entry
(name ID 9) with non-ASCII characters. Double click on the
value, pick a language from the language menu, and enter the
name. You can have multiple localizedDesigner parameters
with different languages.

localizedFamilyName  string  Allows a language specific name with
non-ASCII characters. Double click on the value, pick a lan-
guage from the language menu, and enter the name. You can
have multiple localizedFamilyName parameters with differ-
ent languages. Will create encoded localized name table
entries for IDs 1 and 4.

localizedStyleMapFamilyName  string  Language-specific variant of
styleMapFamilyName. See that entry for further details.

localizedStyleName  string  Language-specific variant of the instance
style name as entered in the user interface in File > Font Info >
Instances. E.g., German ‘Fett’ or French ‘Gras’ for a Bold weight.

Make morx table  boolean  Inserts a ‘morx’ (extended glyph meta-
morphosis) AAT table into the exported font. Takes the con-
tents of a prefix with the name ‘morx’ in File > Font Info >
Features, written in MIF code (metamorphosis input file). For
this to work, the ftxenhancer command line tool of the Apple
Font Tools must be installed. For more information, refer to
the documentation included with the Apple Font Tools.

makeOTF Argument  string  Semicolon-separated chain of makeotf
Terminal arguments, including their respective dashes, e.g.,

You can download the
Apple Font Tools at

developer.apple.com/fonts

https://developer.apple.com/fonts/

� Glyphs Handbook, July 2016   190

‘-ns;-dcs;-ni’. For a documentation of available arguments, see
the MakeOTF User Guide included in the AFDKO.

Master Background Color  color  Sets the canvas color of a master.
The canvas assumes the specified color when the respective
master is active in Edit view.

Master Color  color  For layered color fonts, sets the display color of
the master (see 13.2, ‘Layered Color Fonts’, p. 152).

Master Name  string  Allows you to set a custom name for a master.
This can be useful when the wording of the default options
from the Weight and Width pop-ups may be misleading.

Name Table Entry  string  A custom entry for the OpenType name
table. The syntax is one of the following three:
 • <nameID>; <nameString>
 • <nameID> <platformID>; <nameString>
 • <nameID> <platformID> <encID> <langID>; <nameString>
If not specified, <platformID> will be assumed as 3, and
successively, <encID> as 1 (Unicode), and <langID> as 0x0049
(Windows English). If only <platformID> is specified as 1, then
both <encID> and <langID> will be assumed as 0 (Mac Roman,
and Mac English).
	 The <nameID> can be anything except 1, 2, 3, 5, and 6,
which cannot be set through this parameter. The <platfor-
mID> can either be 1 for Macintosh or 3 for Windows. The
optional <encID> and <langID> represent either Windows aor
Macintosh encoding and language IDs, depending on the
<platformID>. They must be numbers between 0 and 65536,
and can be entered in decimal, octal or hexadecimal form.
The AFDKO Syntax specification stipulates that ‘decimal
numbers must begin with a non-0 digit, octal numbers with a
0 digit, and hexadecimal numbers with a 0x prefix to num-
bers and hexadecimal letters a-f or A-F.’

note  string  Arbitrary note about the font. This is not exported in the
final OpenType font, only stored in the .glyphs file. Setting
the font note as a custom parameter is equivalent to setting it
in the Font Info UI.

openTypeHheaAscender  see hheaAscender
openTypeHheaDescender  see hheaDescender
openTypeHheaLineGap  see hheaLineGap
openTypeNameCompatibleFullName  see compatibleFullName
openTypeNameDescription  see description
openTypeNameLicense  see license
openTypeNameLicenseURL  see licenseURL

You can download the
AFDKO at adobe.com/

devnet/opentype/afdko

For a list of possible values,
see the specification for the

OpenType name table:
www.microsoft.com/

typography/otspec/name.htm

http://www.adobe.com/devnet/opentype/afdko/eula.html
http://www.adobe.com/devnet/opentype/afdko/eula.html
https://www.microsoft.com/typography/otspec/name.htm
https://www.microsoft.com/typography/otspec/name.htm

� Glyphs Handbook, July 2016   191

openTypeNamePreferredFamilyName  see preferredFamilyName
openTypeNamePreferredSubfamilyName  see

preferredSubfamilyName
openTypeNameSampleText  see sampleText
openTypeNameWWSFamilyName  see WWSFamilyName
openTypeNameWWSSubfamilyName  see WWSSubfamilyName
openTypeOS2Panose  see panose
openTypeOS2Type  see fsType
openTypeOS2TypoAscender  see typoAscender
openTypeOS2TypoDescender  see typoDescender
openTypeOS2TypoLineGap  see typoLineGap
openTypeOS2UnicodeRanges  see unicodeRanges
openTypeOS2VendorID  see vendorID
openTypeOS2WeightClass  see weightClass
openTypeOS2WidthClass  see widthClass
openTypeOS2WinAscent  see winAscent
openTypeOS2WinDescent  see winDescent
openTypeVheaVertTypoAscender  see vheaVertTypoAscender
openTypeVheaVertTypoDescender  see vheaVertTypoDescender
openTypeVheaVertTypoLineGap  see vheaVertTypoLineGap
Optical Size  string  Builds the Optical Size OpenType feature ‘size’,

with encoded size menu names for Mac and Windows.
Requires a string with five semicolon-separated values:
 •  design size: size in decipoints (tenths of points) the font was
designed for;
 •  subfamily identifier: arbitrary integer; different fonts with
the same number can be grouped together in an optical size
submenu, if the software supports it;
 •  range start: decipoint size of the size above which the font is
supposed to be used for;
 •  range end: decipoint size of the size until (and including)
which the font is supposed to be used for;
 •  size menu name: submenu name for the optical size, e.g.,
‘Display’, ‘Subhead’, ‘Small’, or ‘Caption’.
	 Example: ‘100; 1; 69; 120; Ten’ will create a size feature
that specifies 10 points as the intended design size, the range
in which it is supposed to be used is 7 to 12 points, and the
optical size name is ‘Ten’. Other fonts that use 1 as subfamily
identifier and ‘Ten’ as name, can be grouped together.

panose  list  Once you click in the Value field, a dialog will appear
that allows you to determine the setting for each category in
the Panose specification. This corresponds to the OpenType

� Glyphs Handbook, July 2016   192

OS/2 table Panose field. ‘This 10 byte series of numbers is
used to describe the visual characteristics of a given typeface.
These characteristics are then used to associate the font with
other fonts of similar appearance having different names. […]
The Panose values are fully described in the Panose “grey-
book” reference, currently owned by Monotype Imaging. The
PANOSE definition contains ten digits each of which currently
describes up to sixteen variations. Windows uses bFamily-
Type, bSerifStyle and bProportion in the font mapper to
determine family type. It also uses bProportion to determine
if the font is monospaced. If the font is a symbol font, the
first byte of the PANOSE number (bFamilyType) must be set
to “pictorial.” ’ At the time of this writing, PANOSE was hardly
in use.

postscriptBlueScale  see blueScale
postscriptBlueShift  see blueShift
postscriptFontName  string  Name to be used for the FontName field

in Type 1/CFF table. Should be ASCII-only, less than 30 charac-
ters long, and no whitespace allowed, e.g., ‘MyFont-BoldCdIt’.
	 ‘The FontName generally consists of a family name
(specifically, the one used for FamilyName), followed by a
hyphen and style attributes in the same order as in the
FullName. For compatibility with the earliest versions of
PostScript interpreters and with the file systems in some
operating systems, Adobe limits the number of characters in
the FontName to 29 characters. As with any PostScript lan-
guage name, a valid FontName must not contain spaces, and
may only use characters from the standard ASCII character
set. If abbreviations are necessary to meet the 29 character
limit, the abbreviations should be used for the entire family’
(Adobe Technote #5088).
	 Adobe recommends these abbreviations for style names:
Bd Bold, Bk Book, Blk Black, Cm Compressed, Cn Condensed,
Ct Compact, Dm Demi, DS Display, Ex Extended, Hv Heavy,
Ic Inclined, It Italic, Ks Kursiv, Lt Light, Md Medium, Nd Nord,
Nr Narrow, Obl Oblique, Po Poster, Rg Regular, Sl Slanted,
Su Super, Th Thin, Up Upright. To further modify the above-
mentioned names, you can prefix them with: Dm Demi,
Sm Semi, Ult Ultra, X Extra.

postscriptFullName  string  Name to be used for the FullName field
in Type 1/CFF table. This is the complete name of the font as
it is supposed to appear to the user, and is thus allowed to

Adobe Technote #5088:
partners.adobe.com/public/

developer/en/font/
5088.FontNames.pdf

http://partners.adobe.com/public/developer/en/font/5088.FontNames.pdf
http://partners.adobe.com/public/developer/en/font/5088.FontNames.pdf
http://partners.adobe.com/public/developer/en/font/5088.FontNames.pdf

� Glyphs Handbook, July 2016   193

contain spaces, e.g., ‘My Font Bold Condensed Italic’.
	 Some systems match the family name ‘against the
FullName for sorting into family groups.’ Therefore, the
family name ‘must match the corresponding portion of the
FullName, and be suitable for display in font menus. All fonts
that are stylistic variations of a unified design should share
the same FamilyName. […] The FullName begins with a copy
of the FamilyName and is completed by adding style attri-
butes — generally in this sequence: weight, width, slope,
optical size’ (Adobe Technote #5088).

postscriptIsFixedPitch  see isFixedPitch
postscriptUnderlinePosition  see underlinePosition
postscriptUnderlineThickness  see underlineThickness
Post Table Type  integer  Version of the post table built into the

instance, the default is 2 for TTF, and 3 for CFF fonts.
preferredFamilyName  string  Preferred family name. Corresponds

to the OpenType name table name ID 16. ‘For historical
reasons, font families have contained a maximum of four
styles, but font designers may group more than four fonts to
a single family. The Preferred Family allows font designers to
include the preferred family grouping which contains more
than four fonts. This ID is only present if it is different
from ID 1’, the Family Name as set in Font Info.

preferredSubfamilyName  string  Preferred subfamily name.
Corresponds to the OpenType name table name ID 17.
‘Preferred Subfamily; Allows font designers to include the
preferred subfamily grouping that is more descriptive than ID
2. This ID is only present if it is different from ID 2 and must
be unique for the the Preferred Family.’

PreFilter  string  Same as Filter, but applied before decomposition. See
its entry in the list of custom parameters in the
Appendix (p. 184).

Preview Ascender  float  Master parameter for the distance between
baseline and the upper edge of the preview in font units.
Useful for scaling the preview at the bottom of the Edit View
or in the Preview Panel when you have large ascenders that
would otherwise be cut off. The default is 1000.

Preview Descender  float  Similar to Preview Ascender, a master
parameter for the distance between baseline and the lower
edge of the preview in font units. Defaults to winAscent if
present, or otherwise, the Descender value set in File > Font
Info > Masters.

� Glyphs Handbook, July 2016   194

Reencode Glyphs  list  Takes a comma-separated list of
‘glyphname=unicodevalue’ pairs, e.g., ‘smiley=E100,
logo=E101’. The parameter assigns the Unicode value to the
glyph with the specified name at export. Should the Unicode
value in question already be assigned to another glyph, the
Unicode value of that other glyph will be deleted, but all
production names will remain intact. It will remove a glyph’s
Unicode assignment if the Unicode value is left out, e.g.,
‘f_f_i=, f_f_j=’ will strip f_f_i and f_f_j from their Unicode value.

Remove Classes  list  Prevents the export of the OpenType classes
mentioned in the list. Useful for removing manually written
classes when glyphs are removed from the font through the
subsetting parameters. Note that automatic classes are re-
moved automatically at export if the triggering glyphs are not
in the font anymore, e.g., because they were removed or
renamed with parameters.

Remove Features  list  Prevents the export of the OpenType features
mentioned in the list. Useful when a glyph name suffix
triggers Glyphs to generate a feature you do not want in
the font, or you just want to disable a manually added fea-
ture for an instance. Note that automatic features are re-
moved automatically at export if the triggering glyphs are not
in the font anymore.

Remove Glyphs  list  Will prevent the glyphs mentioned in the list
from being exported into the font. Automatically generated
OpenType features respect changes in the glyph structure,
e.g., if you remove all smallcap glyphs, then it will not auto-
generate the smcp or c2sc features. Useful for subsetting.

Remove post names for webfonts  boolean  Removes glyph names in
the webfont export, resulting in smaller file sizes.

Rename Glyphs  list  Will exchange the glyphs mentioned in the
value with each other. Takes a list of rename strings of the
form ‘oldname=newname’, e.g. ‘e.bold=e, g.alt=g’. The glyph
previously stored as newname will now be called oldname
and vice versa. The parameter will update composites that
employ the glyphs involved, update automatic features where
necessary, and also exchange the Exports attributes of glyphs.
If you want to avoid the export of one the glyphs, make sure
that either their Exports attributes are set accodingly, or use
the Export Glyphs parameter.

Replace Class  string  Replaces OpenType class code with custom
code. The first word must be the class name (without the at

� Glyphs Handbook, July 2016   195

sign), followed by a semicolon, and the new class code. Works
only if the class exists in File > Font Info > Features. This is
only necessary for manually set up classes. Automatically
generated classes update automatically.

Replace Feature  string  Replaces the content of an OpenType feature
with the code specified. The first four letters must be the
feature name (such as ‘liga’), followed by a semicolon and the
new feature code. Works only if the feature exists in File >
Font Info > Feature.

ROS  string  Sets the ROS (Registry, Ordering, Supplement) for fonts
with a Character To Glyph Index Mapping Table (cmap).
Available values are the public ROSes:
 •  Adobe-CNS1-6
 •  Adobe-GB1-5
 •  Adobe-Japan1-3
 •  Adobe-Japan1-6
 •  Adobe-Korea1-2
 •  Adobe-Identity-0
If you use ‘Adobe-Identity-0’, a GSUB table will be generated
from the available OpenType features. Otherwise, the cmap
and GSUB resources supplied by Adobe are used.

sampleText  string  Sample text. Corresponds to the OpenType name
table name ID 19. ‘This can be the font name, or any other
text that the designer thinks is the best sample to display the
font in.’ This sample text is displayed, for instance, by Apple
Font Book, when the font is selected in Sample view.

Save as TrueType  boolean  Exports the instance as TTF, regardless of
the settings in the Export dialog.

Scale to UPM  integer  Scales the whole font to the supplied integer
value. This is useful for scaling to a UPM of 2048 (or a power
of two between 16 and 16,384) for TTF export, or if you are
designing in an UPM size other than the default 1000.

shoulderHeight  integer  A vertical metric value for Arabic, Hebrew,
and Indic scripts. Will be displayed in Edit view instead of the
x-height in scripts that need a vertical metric line different
from the x-height.

smallCapHeight  integer  A vertical metric for small caps. The algo-
rithm for automatic creation of alignment zones respects
this value. When a small cap glyph is displayed in Edit view
and metrics are set to show, the small cap height will be
displayed instead of the x-height.

� Glyphs Handbook, July 2016   196

styleMapFamilyName  string  Family name used for bold, italic, and
bold italic style mapping. You can use this to create subfami-
lies within larger font families. ‘Up to four fonts can share the
Font Family name, forming a font style linking group.’ Glyphs
uses the entries in Style Name field and in the Style Linking
section in the Instances tab of the Font Info for linking the
four individual weights.

trademark  string  Trademark statement. Corresponds to the
OpenType name table name ID 7. According to Microsoft, ‘this
is used to save any trademark notice / information for this
font. Such information should be based on legal advice. This
is distinctly separate from the copyright.’

TrueType Curve Error  float  Maximum deviance of the approxi-
mated TrueType curve in units. Default is 0.6. A higher curve
error allows the TrueType converter to use fewer quadratic
splines to approximate the cubic splines of your design. This
can result in a significantly smaller ‘glyf’ table (containing the
quadratic outline data), and smaller overall file size.

TTFAutohint binary path  string  File path to a precompiled
TTFAutohint binary that should be used instead of the built-
in TTFAutohint. This can be useful if you need to stick to a
specific version or want to employ a newer version of
TTFAutohint than Glyphs incorporates.

TTFAutohint control instructions  string  This allows you to specify
TTFAutohint control instructions. It is recommended to
prepare the control code in a separate file and then paste it
into the value of the parameter. Possible instructions are:
 •  <glyph> left <pointIDs> <offset>
 •  <glyph> right <pointIDs> <offset>
 •  <glyph> nodir <pointIDs>
 •  <glyph> touch <pointIDs> xshift <x> yshift <y> @ <PPMs>
 •  <glyph> point <pointIDs> xshift <x> yshift <y> @ <PPMs>
Values for <offset> are optional and assumed as zero when
omitted. In the touch and point instructions, either or both of
the shifts can be specified. <x> and <y> must be between 0.0
and 1.0. <glyph> can be one or more comma-separated glyph
names, specified as production names. <PPMs> can be a single
PPM size, a size range of PPMs with a hyphen, or a comma-
separated list of sizes and size ranges. A line that starts with
a hashtag (#) is considered a comment and therefore ignored.
The instructions can be abbreviated with their respective first
letters, e.g., ‘right’ can be written as ‘r’.

For more details about the
control file syntax, see the

TTFAutohint documentation
on freetype.org/ttfautohint

http://freetype.org/ttfautohint/doc/ttfautohint.html#control-instructions

� Glyphs Handbook, July 2016   197

TTFAutohint options  string  Specifies commandline options for the
TrueType autohinter ‘ttfautohint’. Use the dialog sheet to
configure your settings:
 •  Hint Set Range: the PPM range for which the instructions
will be optimized. Large ranges can cause huge file sizes.
 •  Default Script: ‘default script for OpenType features’.
 •  Fallback Script: ‘default script for glyphs that can’t be
mapped to a script automatically’.
 •  Hinting Limit: the PPM size ‘where hinting gets switched off’.
Default is 200 pixels, must be larger than the maximum of
the hint set range. Pixel sizes up to this size use the hinting
configuration for the range maximum.
 •  x-Height Increase Limit: from this pixel size down to 6 PPM,
the x-height is more likely to be rounded up. Default is
14 PPM. ‘Normally, ttfautohint rounds the x height to the
pixel grid, with a slight preference for rounding up. (…) Use
this flag to increase the legibility of small sizes if necessary.’
Set to 0 if you want to switch off rounding up the x-height.
 •  x-Height Snapping Exceptions: ‘list of comma-separated PPM
values or value ranges at which no x-height snapping shall be
applied’, e.g., ‘8, 10-13, 16’ disables x-height snapping for sizes
8, 10, 11, 12, 13, and 16. An empty string means no excep-
tions, and a mere dash (‘-’) disables snapping for all sizes.
 •  Windows Compatibility: ‘This option makes ttfautohint add
two artificial blue zones, positioned at the usWinAscent and
usWinDescent values (from the font’s OS/2 table). The idea is
to help ttfautohint so that the hinted glyphs stay within this
horizontal stripe since Windows clips everything falling out-
side.’ Use this option if clipping occurs in Microsoft Windows.
 •  Pre-Hinting: ‘whether native TrueType hinting of the input
font shall be applied to all glyphs before passing them to the
autohinter. (…) Use this only if the old hints move or scale
subglyphs independently of the output resolution, for ex-
ample some exotic CJK fonts.’
 •  Hint Composites: ‘By default, the components of a composite
glyph get hinted separately. If this flag is set, the composite
glyph itself gets hinted (and the hints of the components are
ignored). Using this flag increases the bytecode size a lot,
however, it might yield better hinting results.’
 •  Symbol Font: ‘Process a font that ttfautohint would refuse
otherwise because it can’t find a single standard character for
any of the supported scripts. For all scripts that lack proper

For an in-depth discussion of
TTFAutohint, see:

freetype.org/ttfautohint/doc/
ttfautohint.html

All direct quotes are from the
ttfautohint Introduction.

http://www.freetype.org/ttfautohint/doc/ttfautohint.html
http://www.freetype.org/ttfautohint/doc/ttfautohint.html

� Glyphs Handbook, July 2016   198

standard characters, ttfautohint uses a default (hinting) value
for the standard stem width instead of deriving it from a
script’s set of standard characters. Use this option (usually in
combination with option Fallback Script) to hint symbol or
dingbat fonts or math glyphs, for example, at the expense of
possibly poor hinting results at small sizes.’
 •  Dehint: Disables all TT hinting, and therefore overrides all
other options. Use only for testing.
 •  Add Autohint Info: appends ‘ttfautohint version and com-
mand line information to the version string or strings (with
name ID 5) in the font’s name table.’
 •  Strong Stems: specifies for which rendering targets to use
strong stem hinting, which ‘snaps both stem widths and stem
positions to integer pixel values as much as possible, yielding
a crisper appearance at the cost of much more distortion’.
Possible rendering targets are: Grayscale (Android), GDI
ClearType (rasterizers v.36 and v.37, e.g. Win XP), DW ClearType
(rasterizers v.38+, i.e., IE9+ and Win 7 and newer).

TTFStems  list  A list of horizontal stem definitions for TrueType
only. For each horizontal stem, you can define a name and an
average value. When you edit the value, a dialog sheet will
drop down. Use the gear menu to add or remove stem defini-
tions, or import the currently available horizontal PostScript
stems from the Horizontal Stems field.

typoAscender  integer  The height of the ascenders in units.
Corresponds to the OpenType OS/2 table sTypoAscender field.
‘The typographic ascender for this font. Remember that this
is not the same as the Ascender value in the hhea table,
which Apple defines in a far different manner. […] The sug-
gested usage for sTypoAscender is that it be used in conjunc-
tion with unitsPerEm to compute a typographically correct
default line spacing. The goal is to free applications from
Macintosh or Windows-specific metrics which are constrained
by backward compatibility requirements. These new metrics,
when combined with the character design widths, will allow
applications to lay out documents in a typographically correct
and portable fashion. These metrics will be exposed through
Windows APIs. Macintosh applications will need to access the
sfnt resource and parse it to extract this data from the
“OS/2” table.
	 For CJK (Chinese, Japanese, and Korean) fonts that are
intended to be used for vertical writing (in addition to

� Glyphs Handbook, July 2016   199

horizontal writing), the required value for sTypoAscender is
that which describes the top of the of the ideographic em-box.
For example, if the ideographic em-box of the font extends
from coordinates 0, –120 to 1000, 880 (that is, a 1000 × 1000
box set 120 design units below the Latin baseline), then the
value of sTypoAscender must be set to 880. Failing to adhere
to these requirements will result in incorrect vertical layout.’

typoDescender  integer  The depth of the descenders in units (nega-
tive value). Corresponds to the sTypoDescender field of the
OpenType OS/2 table.
	 ‘The typographic descender for this font. Remember that
this is not the same as the Descender value in the hhea table,
which Apple defines in a far different manner. One good
source for sTypoDescender in Latin based fonts is the
Descender value from an AFM file. For CJK fonts see below.
	 The suggested usage for sTypoDescender is that it be used
in conjunction with unitsPerEm to compute a typographically
correct default line spacing. The goal is to free applications
from Macintosh or Windows-specific metrics which are
constrained by backward compatability requirements. These
new metrics, when combined with the character design
widths, will allow applications to lay out documents in a
typographically correct and portable fashion. These metrics
will be exposed through Windows APIs. Macintosh applica-
tions will need to access the sfnt resource and parse it to
extract this data from the “OS/2” table (unless Apple exposes
the “OS/2” table through a new API).
	 For CJK (Chinese, Japanese, and Korean) fonts that are
intended to be used for vertical writing (in addition to hori-
zontal writing), the required value for sTypoDescender is that
which describes the bottom of the of the ideographic em-box.
For example, if the ideographic em-box of the font extends
from coordinates 0,-120 to 1000,880 (that is, a 1000 × 1000 box
set 120 design units below the Latin baseline), then the value
of sTypoDescender must be set to -120. Failing to adhere to
these requirements will result in incorrect vertical layout.’

typoLineGap  integer  The recommended whitespace between lines,
measured in units. Corresponds to the OpenType OS/2 table
sTypoLineGap field. ‘The typographic line gap for this font.
Remember that this is not the same as the LineGap value in
the hhea table, which Apple defines in a far different manner.
	 The suggested usage for sTypoLineGap is that it be used in

� Glyphs Handbook, July 2016   200

conjunction with unitsPerEm to compute a typographically
correct default line spacing. Typical values average 7–10% of
units per em. The goal is to free applications from Macintosh
or Windows-specific metrics which are constrained by back-
ward compatability requirements. These new metrics, when
combined with the character design widths, will allow appli-
cations to lay out documents in a typographically correct and
portable fashion.’

underlinePosition  integer  The suggested distance from the baseline
to the top of the underline. Negative values indicate a posi-
tion below the baseline. Corresponds to the CFF table entry
UnderlinePosition. Default is –100.

underlineThickness  non-negative integer  Underline thickness value.
Corresponds to the CFF table entry UnderlineThickness.
Default is 50.

unicodeRanges  list  A list of supported Unicode ranges in the font.
Corresponds to the OpenType OS/2 table ulUnicodeRange1,
ulUnicodeRange2, ulUnicodeRange3 and ulUnicodeRange4
fields. Use this parameter to override the automatic setting by
the app. The dialog offers a search field, so you can quickly
spot the proper ranges for your fonts. E.g., if you want to
cover all Latin ranges, simply search for ‘latin’ and all cor-
responding ranges in the list will be displayed.

uniqueID  non-negative integer  PostScript language level 1 UniqueID.
An optional, uniquely identifying integer between 0 and
16777215, stored in the PostScript Private Dictionary. From
the PostScript Type1 specification: ‘Its primary purpose is
uniquely identifying bitmaps already created and cached
from that font program; having a UniqueID allows the
PostScript interpreter to cache bitmaps across jobs.’ The entry
is deprecated, but remains in use for CJK fonts. Adobe dis-
courages its use, especially in non-CJK fonts. Use this only if
you know what you are doing.

unitsPerEm  non-negative integer  Units per em. Default is 1000 for
PostScript-flavored OpenType fonts and a power of two
between 16 and 16,384 (usually 2048) for TrueType-flavored
OpenType fonts. The value specified is the amount of units
that will be used for the font size. A smaller value will cause
the font to appear larger on screen, and vice versa. This
parameter will only set the UPM value, and not scale node
coordinates and other measurements. If you do want to scale,
see Scale to UPM.

� Glyphs Handbook, July 2016   201

Update Features  boolean  Forces an update of all automatic feature
code. This is especially useful in a phase of font production
where the glyph set changes a lot, or for suppressing the
automatic feature code generation.

Use Extension Kerning  boolean  If checked, additional kern lookups
will be created with a GSUB or GPOS Extension lookup type,
allowing the font to store more kerning values. Use this when
the attempt to export your font results in an offset overflow
error, and you cannot or do not want to delete kern pairs,
especially exceptions. While all modern Office and Layout
software supports extended kerning, this option may render
the kerning data in your font incompatible with old software.

Use Line Breaks  boolean  If checked, line breaks inside OpenType
features will not be escaped (i.e., replaced with ‘\012’) when
stored in a .glyphs file. This can facilitate version control.

Use Typo Metrics  boolean  If checked, applications that respect this
setting (in particular, versions of Microsoft Office since 2006)
will prefer typoAscender, typeDescender, and typoLineGap
over winAscent and winDescent for determining the vertical
positioning. Default is off. Corresponds to bit 7 (‘don’t use Win
line metrics’) in the OS/2 table fsSelection field. According to
the MakeOTF User Guide, this bit was introduced ‘so that
reflow of documents will happen less often than if Microsoft
just changed the behaviour for all fonts.’

vendorID  string  Four character identifier for the creator of the font.
Corresponds to the OpenType OS/2 table achVendID field. If
not set, Glyphs will use ‘UKWN’ (‘unknown’) as Vendor ID.
‘The four character identifier for the vendor of the given type
face. This is not the royalty owner of the original artwork.
This is the company responsible for the marketing and
distribution of the typeface that is being classified. It is
reasonable to assume that there will be 6 vendors of ITC Zapf
Dingbats for use on desktop platforms in the near future (if
not already). It is also likely that the vendors will have other
inherent benefits in their fonts (more kern pairs, unregular-
ized data, hand hinted, etc.). This identifier will allow for the
correct vendor’s type to be used over another, possibly infe-
rior, font file. The Vendor ID value is not required.’

versionString  string  A placeholder string into which the version
number will be inserted automatically, e.g., ‘Version %d.%03d’,
where %d stands for an integer, and %03d for integer

Microsoft keeps a list of
registered vendors at:

microsoft.com/typography/
links/vendorlist.aspx

https://www.microsoft.com/typography/links/vendorlist.aspx
https://www.microsoft.com/typography/links/vendorlist.aspx

� Glyphs Handbook, July 2016   202

represented with three digits, e.g., ‘008’. Will be used to over-
write Name ID 5, the version string in the name table.

vheaVertTypoAscender  integer  Ascender value for vertical type
setting. Corresponds to the vertTypoAscender field in the
OpenType vhea table.

vheaVertTypoDescender  integer  Descender value for vertical type-
setting. Corresponds to the vertTypoDescender field in the
OpenType vhea table.

vheaVertTypoLineGap  integer  Line gap value for vertical type
setting. Corresponds to the vertTypoLineGap field in the
OpenType vhea table.

Webfont Formats  list  For the instance, in which this parameter is
specified, the listed webfont formats will be exported, regard-
less of the settings in the Export dialog. Possible values: EOT,
WOFF or WOFF2.

Webfont Only  boolean  If activated, it removes some of the informa-
tion stored in the font file necessary for desktop use. This
makes it harder to convert the webfont into a different format
or to install it locally in an operating system like Windows or
Mac OS. Careful: Technically, this option produces a damaged
font, which, however, still works as webfont in browsers.

weightClass  integer  Weight class value. Must be a non-negative
integer. Corresponds to the usWeightClass field of the
OpenType OS/2 table. 	‘Indicates the visual weight (degree of
blackness or thickness of strokes) of the characters in
the font.’ Overrides the value set by the Weight drop-down list
of the instance.
	 Value	 Description
	  100	 Thin
	  200	 Extra-light (Ultra-light)
	  300	 Light
	  400	 Normal (Regular)
	  500	 Medium
	  600	 Semi-bold (Demi-bold)
	  700	 Bold
	  800	 Extra-bold (Ultra-bold)
	  900	 Black (Heavy)
Some applications, such as Adobe apps, use this value to sort
the subfamilies in the font menu. Interpretation of this value
varies greatly though. There is a bug in some older Microsoft
renderers which causes all fonts with a weightclass lower
than 250 to be artificially boldened on screen. Other type

� Glyphs Handbook, July 2016   203

engines only consider the hundreds digit, and ignore the tens
and units, i.e., they make no difference between 400 and 425.
Some systems ignore the value completely.

widthClass  integer  Width class value. Must be in the range 1–9.
Corresponds to the usWidthClass field in the OpenType OS/2
table. Some applications use this value to sort the subfamilies
in the font menu. Overrides the value set by the Width drop-
down list of the instance.
	 Value	 Description	 % of normal
	  1	 Ultra-condensed	 50
	  2	 Extra-condensed	 62.5
	  3	 Condensed	 75
	  4	 Semi-condensed	 87.5
	  5	 Medium (normal)	 100
	  6	 Semi-expanded	 112.5
	  7	 Expanded	 125
	  8	 Extra-expanded	 150
	  9	 Ultra-expanded	 200
‘Indicates a relative change from the normal aspect ratio
(width to height ratio) as specified by a font designer for the
glyphs in a font. Although every character in a font may have
a different numeric aspect ratio, each character in a font of
normal width has a relative aspect ratio of one. When a new
type style is created of a different width class (either by a font
designer or by some automated means) the relative aspect
ratio of the characters in the new font is some percentage
greater or less than those same characters in the normal font
— it is this difference that this parameter specifies.’

winAscent  non-negative integer  The top extremum of the font
rendering box for Windows. Thus, winAscent should be high
enough to include caps and their accents. Corresponds to the
usWinAscent field in the OpenType OS/2 table.
	 ‘usWinAscent is computed as the yMax for all characters
in the Windows ANSI character set. usWinAscent is used to
compute the Windows font height and default line spacing.
For platform 3 encoding 0 fonts, it is the same as yMax.
Windows will clip the bitmap of any portion of a glyph that
appears above this value.’

winDescent  integer  The bottom extremum of the font rendering box
for Windows (positive value). Thus, winDescent should be
large enough to encompass the descenders of lowercase
letters like g, p, q, and y. Corresponds to the usWinDescent

The term ANSI refers to the
Windows 8-bit encoding
1252, which is described
at msdn.microsoft.com/
en-us/goglobal/cc305145

and covers mostly Western
European Latin characters.

http://msdn.microsoft.com/en-us/goglobal/cc305145
http://msdn.microsoft.com/en-us/goglobal/cc305145

� Glyphs Handbook, July 2016   204

field of the OpenType OS/2 table. 	‘usWinDescent is computed
as the −yMin for all characters in the Windows ANSI charac-
ter set. usWinDescent is used to compute the Windows font
height and default line spacing. For platform 3 encoding 0
fonts, it is the same as −yMin. Windows will clip the bitmap
of any portion of a glyph that appears below this value.’

Write Kern Table  boolean  On export, will write an old-style kern
table in addition to the kern feature in the GPOS table. All
group kerning will be expanded into all possible singleton
pairs. This means that you will have to subset before using
this parameter, otherwise you risk a table overflow.

WWSFamilyName  string  WWS family name. WWS stands for
‘Weight Width Slope’. Corresponds to the OpenType name
table name ID 21. ‘Used to provide a WWS-conformant family
name in case the entries for IDs 16 and 17 do not conform to
the WWS model. (That is, in case the entry for ID 17 includes
qualifiers for some attribute other than weight, width or
slope.) […] Examples of name ID 21: “Minion Pro Caption” and
“Minion Pro Display”. (Name ID 16 would be “Minion Pro” for
these examples.)’

WWSSubfamilyName  string  WWS Subfamily name. Corresponds to
the OpenType name table name ID 22. ‘Used in conjunction
with ID 21, this ID provides a WWS-conformant subfamily
name (reflecting only weight, width and slope attributes) in
case the entries for IDs 16 and 17 do not conform to the WWS
model. […] Examples of name ID 22: “Semibold Italic”, “Bold
Condensed”. (Name ID 17 could be “Semibold Italic Caption”, or
“Bold Condensed Display”, for example.)’ For name IDs 16 and
17, see the entries for preferredFamilyName and preferred-
SubfamilyName, respectively.

17.4	 CHANGING THE GLYPH DATA

17.4.1	 Global Glyph Data Changes
If you want to control which marks are associated with which
base glyph or how a compound glyph is composed by default,
you can write your own glyph data. To do this, create a copy
of GlyphData.xml in the Info folder you can find via Script >
Open Scripts Folder. Create it next to the Scripts folder if it is
not there yet. You will find the default XML file in the Package
Contents of the Glyphs application. To access it, right-click
on the app icon in Finder, and pick Show Package Contents.

For a step-by-step walkthrough,
see the tutorial ‘Roll Your

Own Glyph Data’ on
glyphsapp.com/tutorials/
roll-your-own-glyph-data

http://glyphsapp.com/tutorials/roll-your-own-glyph-data
http://glyphsapp.com/tutorials/roll-your-own-glyph-data

� Glyphs Handbook, July 2016   205

Drill down to Contents/Frameworks/GlyphsCore.framework/
Versions/A/Resources/GlyphData.xml, and copy it into the
Info folder. The new XML file only needs the lines you want
to customize, so you can delete all lines you want to stay the
same. For changes in the Glyph Data XML to take effect, you
need to restart the application.
	 The XML must have one glyphData element containing any
number of glyph elements. Every glyph element must have
these three compulsory attributes:
 • � name: the glyph name;
 • � category: the category of the glyph, as displayed in Font view

or in Window > Glyph Info, e.g., letter or digit.
And it can have any of these optional attributes:
 • � accents: comma-separated list of glyph names describing

the marks that appear in the mark cloud for the glyph
in question;

 •  �altNames: comma-separated list of alternate or legacy
names that Glyphs recognizes for converting into the glyph
name (as set in the required name attribute) via Glyph >
Update Glyph Info;

 • � anchors: comma-separated list of anchor names describing
anchors which are inserted by default when you choose
Glyph > Set Anchors (Cmd-U);

 • � decompose: in compound glyphs, the glyph names of the
components in the correct order, e.g., letter – mark, in a
comma-separated list;

 • � description: a written description of the glyph, usually taken
from the character information in the Unicode standard;

 •  �production: the production name of the glyph, i.e., the name
as it will be written into the OpenType font file;

 • � script: the script system to which the glyph belongs, e.g.,
arabic, latin, greek;

 •  �sortName: the name by which a glyph is sorted in Font view,
e.g., d1 if you want it to appear right after d;

 •  �sortNameKeep: similar to sortName, but used when File >
Font Info > Other Settings > Keep Alternates Next to Base Glyph
is active;

 •  �subCategory: a further specification of the category, e.g.,
‘Uppercase’ or ‘Lowercase’ for letters;

 • � unicode: the Unicode value associated with the glyph,
written as four- or five-digit hex string.

� Glyphs Handbook, July 2016   206

17.4.2	 Local Glyph Data Changes
If you want to change glyph data for a single file only,
you have mutiple options. Firstly, you can keep a custom
GlyphData.xml in the same folder as your .glyphs file, in an
Info subfolder next to your .glyphs file, or in the parent folder
above the .glyphs file. This way, multiple .glyphs files can
chare the same GlyphData.xml. When you pass on the .glyphs
file with a third party, make sure the XML file travels along.
	 Secondly, you can change the glyph data only for specific
glyphs inside a single .glyphs file. To do that, select one or
more glyphs in Font view, and choose Edit > Info for Selection
(Cmd-Opt-I). In the dialog that appears, activate the check
marks for the fields you want to override, and edit the data
accordingly. For a single glyph, you can edit glyph name,
Unicode value, production name, script, category, and
subcategory. For a selection of multiple glyphs, you can
simultaneously set script, category, and subcategory.

	

17.5	 CHANGING TOOL SHORTCUTS
You can change a shortcut for a tool in the toolbar via
a Terminal command. Start Terminal.app (located in
/‌Applications/Utilities), and type:
	 defaults write com.GeorgSeifert.Glyphs2 <tool> "<key>"
To reset the shortcut back to its default, type:
	 defaults delete com.GeorgSeifert.Glyphs2 <tool>
In either case, confirm by pressing the Return key. The change
should be effective immediately, i.e., you do not need to restart
the application. For <key>, pick any lowercase letter you can
type with a single push of a key on the keyboard. For <tool>,
use any of these:

� Glyphs Handbook, July 2016   207

 •  AnnotationTool.Hotkey	 (default: a)
 •  DrawTool.Hotkey	 (p)
 •  HandTool.Hotkey	 (h)
 •  MeasurementTool.Hotkey	 (l)
 •  OtherPathsTool.Hotkey	 (e)
 •  PenTool.Hotkey	 (b)
 •  PrimitivesTool.Hotkey	 (f)
 •  SelectTool.Hotkey	 (v)
 •  SelectAllLayersTool.Hotkey	 (v)
 •  TextTool.Hotkey	 (t)
 •  RotateTool.Hotkey	 (r)
 •  ScaleTool.Hotkey	 (s)
 •  TrueTypeTool.Hotkey	 (i)
 •  ZoomTool.Hotkey	 (z)
The hotkey IDs correspond to the tool names in the UI, except
for OtherPathsTool.Hotkey, which controls the shortcut for
the Knife and Eraser tools. E.g., to set a new shortcut for
the Annotation tool (default shortcut A), you would start
Terminal.app, and type, on one line:
	� defaults write com.GeorgSeifert.Glyphs2

AnnotationTool.Hotkey "q"
Type the letter corresponding to the key in lowercase. Confirm
with the Return key. Now the Annotation tool can be invoked
by pressing the Q key. If you want to reset it back to its
default, you would type, again on a single line:
	� defaults delete com.GeorgSeifert.Glyphs2

AnnotationTool.Hotkey
And again, press Return to confirm the entry. Now the tool
shortcut is the A key again.

