Chair of Metallography

Chair of Metallography

HEAD OF CHAIR
prof. Boštjan Markoli, DrSc
Tel: +386 1 4704 614
e-mail: bostjan.markoli@ntf.uni-lj.si

CHAIR ASSOCIATES
assoc. prof. Iztok Naglič, DrSc
Tel: +386 1 4704 631
e-mail: iztok.naglic@ntf.uni-lj.si

assist. Adam Zaky, DrSc
Tel: + 386 1 4704 534
e-mail: adam.zaky@ntf.uni-lj.si

tech. assist. Matej Zupančič, B. Eng. in Materials Engineering
Tel: + 386 1 4704 506
e-mail: matej.zupancic@ntf.uni-lj.si

Scientific publications and patents

Scientific publications+

ZAKY, Adam, LESKOVAR, Blaž, NAGLIČ, Iztok, MARKOLI, Boštjan. Microstructural characterization of QC-forming Al-Mn-based alloy using machine learning software. JOM. 2025, DOI: https://doi.org/10.1007/s11837-024-06899-3.

BAJT LEBAN, Mirjam, DREVENŠEK, Tim, KOSEC, Tadeja, LESKOVAR, Blaž, MARKOLI, Boštjan. Comparative study of microstructural influence on corrosion resistance in conventional and Al-Mn quasicrystalline cast aluminum alloys. Journal of materials science. 2025, DOI: https://doi.org/10.1007/s10853-025-11046-7.

KORTNIK, Jože, MARKOLI, Boštjan, ZUPANČIČ, Matej, ZAKY, Adam, NAGLIČ, Iztok. Fracture analysis of cemented-carbide inserts for the dry cutting of repen limestone = Analiza porušitve rezalnih ploščic iz karbidne trdine pri suhem rezanju repenskega apnenca. Materiali in tehnologije. 2025, DOI: https://doi.org/10.17222/mit.2024.1372.

ŽAGAR, Sebastjan, SOYAMA, Hitoshi, MARKOLI, Boštjan, NAGLIČ, Iztok, ŠTURM, Roman. Enhancing the surface strength of magnesium alloy AZ80 through cavitation peening. Materials & design. 2025, DOI: https://doi.org/10.1016/j.matdes.2025.114229.

ŠMALC, Jan, ZAKY, Adam, MARKOLI, Boštjan, ŠTURM, Roman. Microstructural stability and high-temperature mechanical behavior of Al–Ni–Zr alloy strengthened by L12-Al3Zr precipitates. Materials. 2025, DOI: https://doi.org/10.3390/ma18133068.

GHULAM ISAQ KHAN, Mochammad, RAJKOVIĆ, Filip, POPOVIĆ, Miljana, PRELEVIĆ, Dejan, ZAKY, Adam, MARKOLI, Boštjan, RADETIĆ, Tamara. Development of grain microstructure and formation of abnormal grain bands in AA5182 Al–Mg alloy : role of thermo-mechanical processing, texture, and dispersoids. Metallurgical and materials transactions. A, Physical metallurgy and materials science. 2025, DOI: https://doi.org/10.1007/s11661-025-07836-y.

ŠMALC, Jan, ZAKY, Adam, MARKOLI, Boštjan, ŠTURM, Roman. The impact of small Zr addition to Al–Ni cast alloy for elevated temperature applications. Journal of Materials Research and Technology. 2024, DOI: https://doi.org/10.1016/j.jmrt.2024.08.029.

ŠAPEK, Alen, KALIN, Mitjan, GODEC, Matjaž, DONIK, Črtomir, MARKOLI, Boštjan. Efect of feed rate during induction hardening on the hardening depth, microstructure, and wear properties of tool-grade steel work roll. Journal of materials science. Materials in engineering. 2024, DOI: https://doi.org/10.1186/s40712-024-00193-5.

LJUBEC BOŽIČEK, Barbara, HREŠČAK, Jitka, KUŠTER, Monika, KOVAČ, Janez, NAGLIČ, Iztok, MARKOLI, Boštjan, ŠETINA, Barbara, ŠALA, Martin, DREV, Sandra, MARINKO, Živa, ČEH, Miran, ALCANTARA MARINHO, Belisa. Unveiling the potential of (CoFeNiMnCr)3O4 high-entropy oxide synthesized from CoFeNiMnCr high-entropy alloy for efficient oxygen-evolution reaction. Journal of materials science. 2024, DOI: https://doi.org/10.1007/s10853-024-09710-5.

LJUBEC BOŽIČEK, Barbara, ARAH, Bor, KUŠTER, Monika, NAGLIČ, Iztok, MARKOLI, Boštjan, PONIKVAR-SVET, Maja, EINFALT, Lara, ČEH, Miran, ALCANTARA MARINHO, Belisa. Electrocatalytic trends of different Cantor entropy alloys for alkaline and acidic hydrogen-evolution reactions. Materials today communications. 2024, DOI: https://doi.org/10.1016/j.mtcomm.2024.110876.

LESKOVAR, Blaž, ŠTURM, Sašo, DELIJIĆ, Kemal, LEDIEU, Julian, PODLOGAR, Matejka, DREV, Sandra, NAGLIČ, Iztok, MARKOLI, Boštjan. Heterogeneous nucleation and orientation relationships of icosahedral phase with TiB2 inoculants. Journal of alloys and compounds. 2023, DOI: https://doi.org/10.1016/j.jallcom.2023.172195.

NAGLIČ, Iztok, ZAKY, Adam, LESKOVAR, Blaž, ČEKADA, Miha, MARKOLI, Boštjan. Characterization of different WC-Co cemented-carbide tools = Karakterizacija orodij izdelanih iz različnih WC-Co karbidnih trdin. Materiali in tehnologije. 2022, DOI: https://doi.org/10.17222/mit.2022.478.

NAGLIČ, Iztok, KRESNIK, Žan, RESNIK, Andrej, MARKOLI, Boštjan. Microstructure of a nickel insert, a special copper alloy, and a cast joint between them = mikrostruktura nikljevega vstavka, posebne bakrove zlitine in litega spoja med njima. RMZ – Materials and geoenvironment : periodical for mining, metallurgy and geology. 2022, DOI: https://doi.org/10.2478/rmzmag-2021-0016.

NAGLIČ, Iztok, LESKOVAR, Blaž, SAMARDŽIJA, Zoran, MARKOLI, Boštjan. Influence of Ga on the formation of phases in cast Al-Mn-based alloys. Intermetallics. 2021, DOI: https://doi.org/10.1016/j.intermet.2021.107263.

PETRIČ, Mitja, ZEKA, Bastri, MRVAR, Primož, LESKOVAR, Blaž, MARKOLI, Boštjan. Razvoj zlitine AlSi7Mg z dodatki Li = Development of AlSi7Mg alloy with additions of Li. Livarski vestnik : glasilo Društva livarjev Slovenije. 2021.

Patents+

Patents

BONČINA, Tonica, ZUPANIČ, Franc, MARKOLI, Boštjan. Procedure of dynamic deep etching and particle extraction from aluminium alloys : European patent EP2458033, granted 6.9.2013 ; published on 9.10.2013; application no. 11468004.4-2122, 4. October 2011. Munich: Europäisches Patentamt: = European Patent Office: = Office européen des brevets, 2013. https://register.epo.org/application?number=EP11468004&tab=main.

BONČINA, Tonica, ZUPANIČ, Franc, MARKOLI, Boštjan. Postopek dinamičnega globokega jedkanja in ekstrahiranja delcev iz aluminijevih zlitin : SI 23106 A, 2011-01-31. Ljubljana: Urad RS za intelektualno lastnino, 2011. 8 str. [COBISS.SI-ID 14779414]
patentna družina: Patentna prijava št. P-201000313, 2010-10-11.

SPAIĆ, Savo, MARKOLI, Boštjan, DELČNJAK, Božena. Modificiranje zlitin Al-Si s telurjem : SI 21618 (A), 2005-04-30. Ljubljana: Urad Republike Slovenije za intelektualno lastnino, 2005.

Patent applications

BERTONCELJ, Luka, LESKOVAR, Blaž, KOČEVAR, Rok, NAGLIČ, Iztok, ZAKY, Adam, DREMELJ, Borut, MARKOLI, Boštjan, LEGAT, Tadej. Aluminium alloy casting process – iQC HPDC process : patent application No. LU508104 in Luxembourg. Munich: ZACCO, 2023.

MARKOLI, Boštjan, LESKOVAR, Blaž, NAGLIČ, Iztok, ZAKY, Adam, DREMELJ, Borut, BERTONCELJ, Luka. An aluminium alloy and a method of producing an aluminium alloy : patent application no. LU503252 in Luxembourg. Munich: ZACCO, 2022.

Description of pedagogical and scientific research

Pedagogical work+

The Chair of Metallography is responsible for teaching courses in the field of physical metallurgy and materials science for the Bachelor’s degree programmes in Metallurgical Technologies and Materials Engineering, the Master’s degree programme in Materials and Metallurgy and the doctoral programme Materials Science and Engineering. The staff of the Chair are involved in both basic research and industrial development projects at home and abroad.

 

 

Scientific research+

The Chair of Metallography is designed to combine teaching and research work and has equipment for the synthesis and heat treatment of small quantities of predominantly metallic materials. In addition to synthesis, the equipment also enables the preparation of samples for characterization by X-ray diffraction and various methods of microscopy such as light, scanning electron and transmission electron microscopy. The Chair of Metallography has equipment for measuring hardness and microhardness, light microscopy and scanning electron microscopy.

Chair classrooms and laboratories

3D view+





Equipment for materials synthesis

Chamber furnace+

Maximal working temperature: 1100 °C. Several graphite crucibles of varying dimensions are available for the purpose of melting.

Chamber furnace - EUP-K 20/1200 (BOSIO)+

Maximal working temperature: 1200 °C. Several graphite crucibles of varying dimensions are available for the purpose of melting.

Vacuum arc melting system - SP-MSM208 (MTI)+

Capable of melting a wide range of metals/alloys whose melting temperature exceeds that of Tungsten (over 3000 °C). Maximal capacity ∼ 10 g. Operation can be performed at very low over pressure, high vacuum or under a protective Argon atmosphere. The system is equipped with vacuum suction module with several copper moulds, enabling suction casting of rods with a diameter of 4 and 6 mm.

 

Tube furnace - GSL-1700X (MTI)+

Maximal working temperature – 1600 °C. Maximal working temperature under vacuum – 1500 °C. Inner tube diameter – 51 mm. Length of zone with constant temperature – 75 mm. Possible to operate in vacuum or in a protective Argon atmosphere.

Induction melting system with vacuum and protective atmosphere option (VEVOR)+

Maximal working temperature ∼ 1900 °C. Maximal weight of material to be melt ∼ 100 g. Operation possible in vacuum or in a protective Argon atmosphere.

Electric furnace - 3 kg (VEVOR)+

Maximal working temperature: 1150 °C. Crucible volume: ∼ 0,29 L, of which is usable: ∼ 0,15 L. Examples of suitable charge weights: Al (420 g), Cu (1,4 kg).

Equipment for heat treatment

Low temperature vacuum furnace - DZ-6050 (GZ FAN BO LUN)+

Operation is possible under vacuum or using protective Argon atmosphere. Maximal working temperature: 250 °C. Temperature stability: ± 1°C. Maximal attainable vacuum: – 0,098 MPa. Chamber inner dimensions: 410 x 400 x 340 mm (L x W x H). Chamber volume: 55L. Optional 4 removable shelves. Heating elements on all sides of the inner walls (5  heating zones)

Metallographic equipment

Band saw - CY135VP-6+

The saw can process work pieces measuring 150 x 180 mm (rectangular) or ∅150 mm (round). Adjustable cut angle. Maximal weight of work piece: 98 kg.

Low speed saw - IsoMet (BUEHLER)+

The saw enables precise cutting/sectioning of small work pieces of widths up to 38 mm. Cutting/sectioning width can be adjusted using the screw micrometer. Several saw blades available (diamond edge sintered, fully sintered, Al2O3 blades. With varying diameters – 100 and 127 mm).

Hot mounting press - METPRESS-5A (KASON)+

Hot mounting can be performed using several dies – ∅25 mm, ∅30 mm, ∅40 mm in ∅50 mm. Adjustable working temperature –  from 35 °C to 200 °C. Adjustable curing time – from 1 to 99 minutes. Water cooling with adjustable cooling duration – up to 60 minutes.

Grinding and polishing machine - MiniMet 1000 (BUEHLER)+

The machine enables semi-automatic grinding and polishing of metallographic samples. The available holders are single – enabling the preparation of only one sample at a time. The sample has to be mounted beforehand in a die of ∅25, ∅30, ∅40 or ∅50 mm. The speed and force can be adjusted.

Grinding and polishing machine - UNIPOL-810 (MTI)+

The machine enables semi-automatic grinding and polishing of samples. Sample holder can hold 3 samples at a time – enabling simultaneous preparation of 3 samples at once. Samples have to be mounted beforehand in a die of ∅25 mm. Rotational speed is adjustable – up to 600 rotations per minute. Force can be adjusted using several weights.

Machine for polishing of metallographic samples using vibrations - Vibromet (BUEHLER)+

The machine enables polishing of samples using vibrations. This method enables preparation of samples with a highly polished surface without deformation. Samples prepared this way are suitable for analysis using techniques that require a high degree of finish – EBSD (electron backscattered diffraction) and TEM (transmission electron microscopy).

Disk grinder - Model 623 (GATAN)+

This tool enables precise thinning of samples down to a thickness of 120 – 70 µm. Afterwards samples are ready for final preparation steps for TEM (transmission electron microscopy).

Precision ion beam polishing system - Model 691 (GATAN)+

Ion beam thinning of samples for TEM (transmission electron microscopy). Sample dimensions: ∅3 mm. Samples have to be prepared beforehand – cut/sectioned to a thickness of ∼ 500 µm, mechanically thinned down to 120 – 70 µm and dimpled to 10 – 30 µm. During ion beam thinning two ion guns bombard the sample with Argon ions to create areas of 10 – 100 nm thickness. These areas enable electrons to pass threw them at high accelerating voltages (over 200 keV). Prepared samples are suitable for TEM microscopy (transmission electron microscopy).

Microscopy equipment

Digital macroscope - W10 (VEVOR)+

Enables the observation of samples at a magnification of 5x to ∼ 20x (higher magnification can be obtained if the sample is ∅<2.7 mm. Images can be taken using the machine itself or using a computer with accompanying software.

Optical microscope - Axio Imager.A1m (ZEISS)+

Digital camera Axiocam 208 Color. Zen software. Lens system: objectives – 5x, 10x, 25x, 50x, 100x, eyepiece – 10x. Enables the observation of samples in bright-field and dark-field BF/DF, using polarized light and using differential interference contrast DIC.

Scanning electron microscope - FEG SEM JSM-7600F (JEOL)+

FEG SEM equipped with SEI and LEI secondary electron detectors, RBEI and RIBE backscattered detectors. Microscope is equipped with EDS, WDS and EBSD detectors.

Hardness testing equipment

Rockwell hardness tester - Macromet (BUEHLER)+

Measurements can be performed using several scales: 150 kg (HRC), 100 kg (HRB) and 60 kg (HRA). Maximal height of work piece: 130 mm. Maximal length of work piece: 280 mm.

Vickers hardness tester - HTMV-1000AD (KASON)+

Measurements can be performed using several weights/forces – 10 g, 25 g, 50 g, 100 g, 200 g, 300 g, 500 g and 1000 g. Measurement range: from 5 to 3000 HV. Dimension of the table: 100 x 100 mm. Maximal height of work piece: 110 mm. Diagonals can be measured directly on the machine itself using the eyepiece or using the computer with accompanying software.

Collection of interesting microstructures 😀

Skip to content

Ooops...

It looks like you're using an old version of your browser.
For the best experience, please update your browser or use alternative options as Mozilla Firefox and Google Chrome.